Toxina Botulínica do Tipo A

mecanismo de ação

  • Maria Matilde de Mello Sposito Universidade de São Paulo. Faculdade de Medicina
Palavras-chave: toxina botulínica tipo A, sistema nervoso central/efeitos de drogas, literatura de revisão como assunto

Resumo

Neste trabalho de revisão, são abordados inicialmente aspectos históricos das pesquisas para a obtenção e utilização da toxina botulínica do tipo A (BoNT/A), inicialmente como arma biológica e depois como medicamento. Em seguida descreve-se detalhadamente a estrutura e síntese da BoNT/A, com ênfase às cadeias leve e pesada para na seqüência descrever-se o mecanismo de ação. O mecanismo de ação é explorado nos seus aspectos de relaxamento muscular sobre músculos estriados (inibição da liberação de acetilcolina) e ação sobre o reflexo de estiramento medula; ação antinociceptiva, através do bloqueio da liberação de peptídeos relacionados com a dor e sobre o sistema nervoso autônomo, atuando sobre glândulas (salivar, sudorípara e lacrimal) e sobre bexiga e próstata. Ainda discute-se os efeitos diretos e indiretos da BoNT/A sobre o Sistema Nervoso Central, os aspectos relacionados à antigenicidade quando utilização deste recurso terapêutico e as direções futuras para este recurso.

Downloads

Não há dados estatísticos.

Biografia do Autor

Maria Matilde de Mello Sposito, Universidade de São Paulo. Faculdade de Medicina
Medica Fisiatra, Centro de Reabilitação Umarizal - Instituto de Medicina Física e Reabilitação do Hospital das Clínicas da FMUSP. Médica consultora para Brasil e América Latina da Allergan Produtos Farmacêuticos Ltda, Divisão Neurociências BOTOX®

Referências

Poli MA,Lebeda FJ. An overview of clostridial neurotoxins. In: Massaro EJ. Handbook of neurotoxicology. Totowa: Human Press; 2002. p. 293-304.

Hicks RP, Hartell MG, Nichols DA, Bhattacharjee AK, van Hamont JE, Skillman DR. The medicinal chemistry of botulinum, ricin and anthrax toxins. Curr Med Chem. 2005;12(6):667-90.

Middlebrook JL, Franz DR. Botulinum Toxin. In: Sidell FR, Takafuji ET, Franz DR. Textbook of Military Medicine. Falls Church: Office of the Surgeon General, US Army; 1997. p 643-54.

Smart JK. History of chemical and biological warfare: an n American perspective. In: Sidell FR, Takafuji ET, Franz DR. Textbook of Military Medicine. Falls Church: Office of the Surgeon General, US Army; 1997. p 9-86.

Jankovic J. Botulinum toxin in clinical practice. J Neurol Neurosurg Psychiatry. 2004;75(7):951-7.

Aoki KR. Botulinum toxin: a successful therapeutic protein. Curr Med Chem. 2004;11(23):3085-92.

Poulain B, Popoff MR, Molgó J. How do the botulism neurotoxins block neurotransmitter release: from botulism to the molecular mechanism of action. The Botulinum J. 2008;1(1):14-87.

Turton K, Chaddock JA, Acharya KR. Botulinum and tetanus neurotoxins: structure, function and therapeutic utility. Trends Biochem Sci. 2002;27(11):552-8.

Dressler D, Benecke R. Pharmacology of therapeutic botulinum toxin preparations. Disabil Rehabil. 2007;29(23):1761-8.

Meunier FA, Herreros J, Schiavo G, Poulain B, Molgó J. Molecular mechanism of action of botulinal neurotoxins and the synaptic remodeling they induce in vivo at skeletal neuromuscular junction. In: Massaro EJ. Handbook of neurotoxicology. Totowa: Human Press; 2002. p 305-47.

Popoff MR, Marvaud JC, Raffestin S. Mechanism of action and therapeutic uses of botulinum and tetanus neurotoxins. Ann Pharm Fr. 2001;59(3):176-90.

Aoki KR. Pharmacology of Botulinum neurotoxins. Oper Tech Otolaryngol Head Neck Surg. 2004;15(2):81-5.

Silberstein S. Botulinum neurotoxins: origins and basic mechanisms of action. Pain Pract. 2004;4 Suppl 1:S19-26.

Frenkl TL, Rackley RR. Injectable neuromodulatory agents: botulinum toxin therapy. Urol Clin North Am. 2005;32(1):89-99.

Wenzel RG. Pharmacology of botulinum neurotoxin serotype A. Am J Health Syst Pharm. 2004;61(22 Suppl 6):S5-10.

Aoki KR. Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicology. 2005;26(5):785-93.

Lipham WJ. What is botulinum toxin and how does it works? In: Lipham WJ. Cosmetic and clinical application of Botulinum Toxin. Thorofare: Slack; 2004. p. 5-9.

Paiva A, Meunier FA, Molgó J, Aoki KR, Dolly JO. Functional repair of motor end-plates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci USA. 1999;96(6):3200-5.

Dressler D, Saberi FA, Barbosa ER. Botulinum toxin: mechanisms of action. Arq Neuropsiquiatr. 2005;63(1):180-5.

Yoshida K, Kaji R, Kubori T, Kohara N, Iizuka T, Kimura J. Muscle afferent block for the treatment of oromandibular dystonia. Mov Disord. 1998;13(4):699-705.

Aoki KR. Pharmacology and immunology of botulinum toxin serotypes. J Neurol. 2001;248 Suppl 1:3-10.

Casale R, Tugnoli V. Botulinum toxin for pain. Drugs R D. 2008;9(1):11-27.

Welch MJ, Purkiss JR, Foster KA. Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon. 2000;38(2):245-58.

Durham PL, Cady R, Cady R. Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy. Headache. 2004;44(1):35-42.

Cui M, Khanijou S, Rubino J, Aoki KR. Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain. 2004;107(1-2):125-33.

Cui M, Aoki KR. Mechanisms of antinociceptive effect of subcutaneous Botox: inhibition of peripheral and central nociceptive processing. In: Olesen J, Silberstein SD, Tfelt-Hansen P. Preventive pharmacotherapy of headache disorders. Oxford: Oxford University Press; 2004. p.158-62.

Morenilla CP, Planells RC, Garcia NS, Ferrer AM. Regulated exocytose contributes to protein kinase C potentialization of vanilloid receptor activity. J Biol Chem. 2004;279:2566-72.

Göbel H. Botulinum toxin A in pain management: mechanisms of action and rationale for optimum use. In: Jost WH. Botulinum toxin in painful disease. Basel: Karger; 2003. p.14-22.

Dressler D, Benecke R. Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol. 2003;49(1):34-8.

Apostolidis A, Fowler CJ. The use of botulinum neurotoxin type A (BoNTA) in urology. J Neural Transm. 2008;115(4):593-605.

Borodic GE, Acquadro M, Johnson EA. Botulinum toxin therapy for pain and inflammatory disorders:mechanisms and therapeutic effects. Expert Opin Investig Drugs. 2001;10(8):1531-44.

Kreyden OP, Scheidegger EP. Anatomy of the sweat glands, pharmacology of botulinum toxin, and distinctive syndromes associated with hyperhidrosis. Clin Dermatol. 2004;22(1):40-4.

Kellogg DL Jr, Pérgola PE, Piest KL, Kosiba WA, Crandall CG, Grossmann M, et al. Cutaneous active vasodilation in humans is mediated by cholinergic nerve cotransmission. Circ Res. 1995;77(6):1222-8.

Apostolidis A, Haferkamp A, Aoki KR. Understanding the role of botulinum toxin A in the treatment of the overactive bladder-more than just muscle relaxation. Eur Urol. 2006;Suppl 5:670-8.

Apostolidis A, Dasgupta P, Fowler CJ. Proposed mechanism for the efficacy of injected botulinum toxin in the treatment of human detrusor overactivity. Eur Urol. 2006;49(4):644-50.

Sahai A, Khan MS, Le Gall N, Dasgupta P; GKT Botulinum Study Group. Urodynamic assessment of poor responders after botulinum toxin-A treatment for overactive bladder. Urology. 2008;71(3):455-9.

Lemack GE. Intradetrusor botulinum toxin injections for neurogenic overactive bladder: are we there yet? Eur Urol. 2008;53(2):240-1.

Chuang YC, Yoshimura N, Wu M, Huang CC, Chiang PH, Tyagi P, et al. Intraprostatic capsaicin injection as a novel model for nonbacterial prostatitis and effects of botulinum toxin A. Eur Urol. 2007;51(4):1119-27.

Maria G, Brisinda G, Civello IM, Bentivoglio AR, Sganga G, Albanese A. Relief by botulinum toxin of voiding dysfunction due to benign prostatic hyperplasia: results of a randomized, placebo-controlled study. Urology. 2003;62(2):259-64.

Chuang YC, Chiang PH, Huang CC, Yoshimura N, Chancellor MB. Botulinum toxin type A improves benign prostatic hyperplasia symptoms in patients with small prostates. Urology. 2005;66(4):775-9.

Chuang YC, Tu CH, Huang CC, Lin HJ, Chiang PH, Yoshimura N, et al. Intraprostatic injection of botulinum toxin type-A relieves bladder outlet obstruction in human and induces prostate apoptosis in dogs. BMC Urol. 2006;6:12.

Wiegand H, Erdmann G, Wellhöner HH. 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection. Naunyn Schmiedebergs Arch Pharmacol. 1976;292(2):161-5.

Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M. Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci. 2008;28(14):3689-96.

Kuehn BM. Studies, reports say botulinum toxins may have effects beyond injection site. JAMA. 2008;299(19):2261-3.

Moreno-López B, de la Cruz RR, Pastor AM, Delgado-García JM. Botulinum neurotoxin alters the discharge characteristics of abducens motoneurons in the alert cat. J Neurophysiol. 1994;72(4):2041-4.

Moreno-López B, de la Cruz RR, Pastor AM, Delgado-García JM. Effects of botulinum neurotoxin type A on abducens motoneurons in the cat: alterations of the discharge pattern. Neuroscience. 1997;81(2):437-55.

Publicado
2009-03-09
Seção
Artigo de Revisão