Sinergismo entre o vasto lateral e vasto medial oblíquo durante a marcha após a reconstrução do ligamento cruzado anterior

Autores

DOI:

https://doi.org/10.11606/issn.2317-0190.v26i4a168198

Palavras-chave:

Eletromiografia, Ligamento Cruzado Anterior, Síndrome da Dor Patelofemoral/reabilitação

Resumo

Objetivo: O objetivo deste estudo foi comparar a co-contração muscular (CCM) e ativação dos músculos vasto lateral (VL) vasto medial oblíquo (VMB) durante a marcha e uma amostra saudável – grupo controle (GC) e pacientes submetidos a reconstrução do ligamento cruzado anterior (RLCA). Métodos: Vinte e três indivíduos participaram neste estudo, 14 GC e 9 RLCA. A atividade mioelétrica do VL e VMO foram captados para cálculo da CCM. A razão VL/VMO foi obtida dividindo o sinal normalizado desses dois músculos em cada ponto da curva. O valor da CCM e a relação de ativação na fase de apoio duplo, fase de apoio simples, fase de apoio terminal e fase de balanço foram obtidas pelo cálculo da média aritmética dos valores de intensidade da curva comum em cada intervalo. Resultado: CCM foi significativamente menor no grupo RLCA durante a fase de apoio dupla (p=0.001), efeito máximo (1.72). Não foram encontradas diferenças entre as outras comparações. Conclusão: O resultado desse estudo mostrou que a contração dos músculos VL e o VMO na fase inicial de apoio duplo da marcha foi diferente entre indivíduos saudáveis e submetidos a RLCA. Este achado pode estar relacionado a diminuição da estabilidade patelofemoral durante a resposta a carga, aumentando o potencial risco de desenvolver lesões nesta articulação.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Perry J, Burnfield JM. Gait analysis: normal and pathological function. 2nd ed. New Jersey: SLACK Incorporated; 2010.

Wilk KE, Macrina LC, Cain EL, Dugas JR, Andrews JR. Recent advances in the rehabilitation of anterior cruciate ligament injuries. J Orthop Sports Phys Ther. 2012;42(3):153-71. Doi: https://www.jospt.org/doi/10.2519/jospt.2012.3741

Hubley-Kozey CL, Deluzio KJ, Landry SC, McNutt JS, Stanish WD. Neuromuscular alterations during walking in persons with moderate knee osteoarthritis. J Electromyogr Kinesiol. 2006;16(4):365-78. Doi: https://doi.org/10.1016/j.jelekin.2005.07.014

Cinque ME, Dornan GJ, Chahla J,Moatshe G, LaPrade RF. High rates of osteoarthritis develop after anterior cruciate ligament surgery: an analysis of 4108 patients. Am J Sports Med. 2018;46(8):2011-9. Doi: https://doi.org/10.1177%2F0363546517730072

Palmieri-Smith RM, Thomas AC. A neuromuscular mechanism of posttraumatic osteoarthritis associated with ACL injury. Exerc Sport Sci Rev. 2009;37(3):147-53. Doi: 10.1097/JES.0b013e3181aa6669

Petersen W, Ellermann A, Gösele-Koppenburg A, Best R, Rembitzki IV, Brüggemann GP, et al. Patellofemoral pain syndrome. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2264-74. Doi: https://doi.org/10.2147/OAJSM.S133406

Lin F, Wang G, Koh JL, Hendrix RW, Zhang LQ. In vivo and noninvasive three-dimensional patellar tracking induced by individual heads of quadriceps. Med Sci Sports Exerc. 2004;36(1):93-101. Doi: https://doi.org/10.1249/01.MSS.0000106260.45656.CC

Sheehan FT, Borotikar BS, Behnman AJ, Alter KE. Alterations in vivo knee joint kinematics following a femoral never branch block of the vastus medialis: Implications for patellofemoral pain syndrome. Clin Biomech. 2012;27(6):525-31. Doi: https://doi.org/10.1016/j.clinbiomech.2011.12.012

Saper MG, Shneider DA. Diagnosis and treatment of lateral patellar compression syndrome. Arthrosc Tech. 2014;3(5): e633-e638. Doi: https://dx.doi.org/10.1016%2Fj.eats.2014.07.004

Lustosa LP, Ocarino JM, Andrade MA, Pertence AE, Bittencourt NF, Fonseca ST, et al. Muscle co-contraction after anterior cruciate ligament reconstruction: Influence of functional level. J Electromyogr Kinesiol. 2011;21(6):1050-5. Doi: https://doi.org/10.1016/j.jelekin.2011.09.001

Norkin CC, Levangie PK. Joint structure and function: a comprehensive analysis. Philadelphia: F.A. Davis; 2011.

Metsavaht L, Leporace G, Riberto M, Mello Sposito MM, Batista LA. Translation and cross-cultural adaptation of the Brazilian version of the International Knee Documentation Committee Subjective Knee Form: validity and reproducibility. Am J Sports Med. 2010;38(9):1894-9. Doi: https://doi.org/10.1177%2F0363546510365314

Metsavaht L, Leporace G, Riberto M, Sposito MM, Del Castillo L, Oliveira LP, et al. Translation and Cross Cultural Adaptation of the Lower Extremity Functional Scale into a Brazilian version and validation to patients with knee injuries. J Orthop Sports Phys Ther. 2012;42(11):932-9. Doi: https://www.jospt.org/doi/10.2519/jospt.2012.4101

Cram J, Kasman G, Holtz J. Part III Atlas for electrode placement. In: Criswell E. Cram’s introduction to surface electromyography. 2nd ed. London: Jones and Bartlett; 2011. p.365-7.

Favre F, Hayoz M, Erhart-Hledik JC, Andriacchi TP. A neural network model to predict knee adduction moment during walking based on ground reaction force and anthropometric measurements. J Biomech. 2012;45(4):692-8. Doi: https://www.doi.org/10.1016/jbiomech.2011.11.057

Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Lawrence Erlbaum Associates; 1988.

Ithurburn MP, Paterno MV, Thomas S, Pennell ML, Evans KD, Magnussen, RA, et al. Clinical measures associated with knee function over two years in young athletes after ACL reconstruction. Knee. 2019;26(2):355-3. Doi: https://doi.org/10.1016/j.knee.2019.01.011

Wong YM. Recording the vastii muscle onset timing as a diagnostic parameter for patelofemoral pain syndrome: Fact or fad? Phys Ther Sport. 2009;10(2):71-4. Doi: https://doi.org/10.1016/j.ptsp.2009.02.001

Elliott CC, Diduch DR. Biomechanics of patellofemoral instability. Oper Tech Sports Med. 2001;9(3):112-21. Doi: https://doi.org/10.1053/otsm.2001.25157

Scanlan SF, Chaudhari AMW, Dyrby CO, Andriacchi TP. Differences in tibial rotation during walking in ACL reconstructed and healthy contralateral knees. J Biomech. 2010;43(9):1817-22. Doi: https://doi.org/10.1016/j.jbiomech.2010.02.010

Culvenor AG, Øiestad BE, Holm I, Gunderson RB, Crossley KM, Risberg MA. Anterior knee pain following anterior cruciate ligament reconstruction does not increase the risk of patellofemoral osteoarthritis at 15-and 20-year follow-ups. 2017;25(1):30-3. Doi: http://dx.doi.org/10.1016/j.joca.2016.09.012

Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ. Contralateral limb strength deficits after anterior cruciate ligament reconstruction using a hamstring tendon graft. Clin Biomech. 2007;22(5):543-50. Doi: https://doi.org/10.1016/j.clinbiomech.2007.01.009

Disselhorst-Klug C, Schmitz-Rode T, Rau G. Surface electromyography and muscle force: limits in sEMG-force relationship and new approaches for applications. Clin Biomech. 2009;24(3):225-35. Doi: https://doi.org/10.1016/j.clinbiomech.2008.08.003

Giles LS, Webster KE, McClelland JA, Cook J. Atrophy of the quadriceps is not isolated to the vastus medialis oblique in individuals with patellofemoral pain. J Orthop Sports Phys Ther. 2015;45(8):613-9. Doi: https://www.jospt.org/doi/10.2519/jospt.2015.5852

Powers CM. Patellar kinematics, part I: the influence of vastus muscle activity in subjects with and without patellofemoral pain. Phys Ther. 2000;80(10):956-64. Doi: https://doi.org/10.1093/ptj/80.10.956

Santos GM, Say KG, Pulzato F, Oliveira AS, Bevilaqua-Grossi D, Monteiro-Pedro V. Integrated electromyographic ratio of the vastus medialis oblique and vastus lateralis longus muscles in gait in subjects with and without patellofemoral pain syndrome. Br J Sports Med. 2007;13(1):17-21. Doi: https://doi.org/10.1590/S1517-86922007000100005

Downloads

Publicado

2019-12-31

Edição

Seção

Artigo Original

Como Citar

1.
Sinergismo entre o vasto lateral e vasto medial oblíquo durante a marcha após a reconstrução do ligamento cruzado anterior. Acta Fisiátr. [Internet]. 31º de dezembro de 2019 [citado 29º de março de 2024];26(4):199-203. Disponível em: https://revistas.usp.br/actafisiatrica/article/view/168198