TRACE ELEMENTS AND Pb ISOTOPE VARIATIONS IN GALENA FROM THE ONÇA GOLD DEPOSIT, MATO GROSSO, BRAZIL: FLUID MIXING FROM HYDROTHERMAL AND CRUSTAL SOURCES

M.C. Geraldes¹; L.A. Petroniho²; D. Silva³

PALAVRAS-CHAVE: gold, isotopes, mineral chemistry, hydrothermal solutions.

ABSTRACT

This study deals with the petrography of sulfides and quartz veins, Pb isotopes, major and trace elements in galena, microthermometry and Raman spectrometry of fluid inclusions, with the objective of delineating temporal and spatial aspects of the fluid circulation patterns during the origin of the Onça gold deposit, Mato Grosso State, Brazil.

The Pb isotope and mineral chemistry data indicate variable sources for the Pb isotopes, major (S and Pb) and trace elements (Sb, Ag, Zn and Se), with increases or decreases of the contents during the growth of the galena crystals. The results suggest that the variation may be due to the contamination of the hydrothermal solution by mixing with components derived from supracrustal host rocks of Pontes e Lacerda metavolcanic-sedimentary sequence.

The mineral chemistry and fluids inclusion studies suggest two possible sources for the hydrothermal solutions: (1) deep solutions that originated during the regional metamorphism represented by the Aguapeí metamorphic event where the solutions present aqueous-carbonic composition and low salinity. Geologic control of the mineralization is in agreement with this hypothesis because the ore bodies are syntectonic with foliation formed during the Aguapeí event; (2) high contents of base metals indicates a plutonic influence in the origin of the fluids. Geologic controls also are in agreement with this hypothesis because pegmatitic intrusion was synchronous with the mineralizations.

The Pb isotope and fluid inclusion relations allows the conclusions that the compositions of the hydrothermal solutes were variable during the emplacement of the quartz veins and the growth of galena crystals. The earlier solutes had hydrocarbons and were more radiogenic, whereas the later solutes had base metals and were less radiogenic.

The Onça deposit originated during a metamorphic event by the effect of hydrothermal solutions related to plutonism, and with an important contribution from the host rocks as recorded by the influence of isotope, major and trace element compositions on the growth of ore-forming minerals.

¹Instituto de Geociências/UNICAMP, São Paulo, Brasil. Actual address: Departamento de Geologia Geral, Instituto de Geociências/USP, São Paulo, Brasil. E-mail: mcgeral@usp.br.
²Centro de Pesquisas Geocronológicas, Instituto de Geociências/USP, São Paulo, Brasil.
³DMG, Instituto de Geociências/UNICAMP, São Paulo, Brasil.
RESUMO

Este estudo compreende petrografia de sulfetos e veios de quartzo, elementos traços, maiores e isotopos de Pb em galena, microtermometria e espectrometria Raman em inclusões fluidas com o objetivo de delinear aspectos temporais e espaciais da circulação de fluidos durante a origem do depósito aurífero do Onça, Estado do Mato Grosso.

Os resultados de isotopos de Pb e a química mineral indicam uma fonte variável para os isotopos de Pb e para elementos maiores (S e Pb) e elementos traços (Sb, Ag, Zn e Se) com aumentos e diminuições nos seus conteúdos durante o crescimento dos cristais de galena de forma que esta variação pode ser resultado da contaminação da solução hidrotermal pelas rochas supracrustais encaixantes da Sequência Metavulcano-sedimentar Pontes e Lacerda.

A química mineral e o estudo das inclusões fluidas sugerem dois tipos de fontes para as soluções hidrotermais: (1) soluções originadas em profundidade durante o metamorfismo regional representado pelo evento Aguapei, com soluções aquocarbónicas e de baixa salinidade, hipótese corroborada pela concordância dos corpos de minério com a foliação regional gerada por este evento; (2) altos valores de metais básicos indicam uma influência plutônica na origem dos fluidos.

Os isotopos de Pb e os estudos de inclusões fluidas analisadas conjuntamente permitem concluir que a composição das soluções hidrotermais foram variáveis durante o emplacement dos veios de quartzo e o crescimento dos cristais de galena. As soluções iniciais apresentam CH₄ na sua composição e são mais radiogênicas. As soluções finais apresentam metais básicos em sua composição e são menos radiogênicos.

Como conclusão é possível sugerir que o depósito do Onça foi originado durante um evento metamórfico por soluções hidrotermais com influência de plutonismo, com uma importante contribuição das rochas encaixantes na composição isotópica do Pb, nos elementos maiores e traços durante o crescimento dos minerais de minério.

INTRODUCTION

Pb isotope determinations in ore-forming minerals are particularly useful when they can be directly combined with petrological, geochemical and fluid inclusions studies. In addition to dating of trace phases, radiogenic isotope study of ore deposits can potentially provide information on the source of solutes. Similarly, ore-forming mineral geochemistry and fluid inclusions may explicitly constrain the crustal or mantle reservoirs that are sampled by the ore-forming system (DeWolf et al., 1993; Frei & Kamber, 1995).

Pb isotope source tracing relies on a number of assumptions, including: (1) measured or calculated initial ratios corresponding to the isotopic composition of the ore-forming hydrothermal system; (2) fluid signatures that accurately reflect the isotopic composition of the rock reservoir(s) sampled by the hydrothermal system, and (3) contemporaneous isotopic ratios of all possible reservoirs (Kerrich, 1991; Faure, 1986). Moreover, many studies have shown that Pb isotope of ore deposits may be a mixture (Peucker-Ehrenbrink et al., 1994) of hydrothermal contributions (Deloule et al., 1983; Bierlein et al., 1996) and Pb indigenous to the adjacent host rocks (Crocetti et al., 1988; Wilton, 1991; Sundblad et al., 1991) or from a pre-existing deposit (Tassinari et al., 1990).

On the other hand, the Pb-isotopic data of ore-forming minerals may indicate derivation of mineralizing fluids associated with the hydrothermal circulation generated by local igneous bodies intruded during the ore-forming process (Duane et al., 1991; Deloule et al., 1989). Most studies assume that mineral or minerals generated by this process are isotopically homogeneous and may have some variations if enriched in ra-
diogenic Pb from U and Th radioactive decay (Yuxue et al., 1995). However, Hart et al. (1981) demonstrated that galena may show concentric zonation of Pb isotopes with total variation of ±3% in $^{208}\text{Pb}/^{206}\text{Pb}$ and 4% in $^{207}\text{Pb}/^{206}\text{Pb}$ and the range in the observed Pb isotope ratios in the crystal is larger than that observed previously for bulk galena analysis from throughout the Mississippi Valley base metal deposits (Cannon et al., 1963). Pb isotope zoning in pyrite was also described in the literature (Raymond, 1996).

The application of major and trace element, and isotopic composition of galena and fluid inclusion data are useful in delineating temporal and spatial aspects of the fluid circulation patterns and are used here to interpret the origin of the Onça gold deposit, Mato Grosso State, Brazil.

GEOLOGIC SETTING

The gold deposits of the Pontes e Lacerda region are situated in the SW part of the Amazon Craton (Fig. 1) within the Aguapei-Sunsás mobile belt, a N-NW trending zone time-related to Grenvillian folded rocks (Fig. 2). Present knowledge about the evolution of the study area was done by Sadowski & Bettencourt (1996). The geological units which outcrop in the region include the Basal Complex granulites and gneissic-migmatitic rocks, probably correlated to the 1961 Ma old Lomas Maneches Granulate Complex (Litherland et al., 1989); the Pontes e Lacerda metavolcanic-metasedimentary sequence (MVSS) (1921 Ma, Geraldes et al., 1996a) probably equivalent to the Alto Jauru greenstone belt to the east of the study area (1988 Ma, Monteiro et al., 1986; Geraldes et al., 1996a); the Santa Helena granite gneiss (gneissification at around 1300 Ma, Menezes et al., 1993; Geraldes et al., 1996a); the Maraboa granite (1257 Ma, Geraldes et al., 1996a); the clastic metasedimentary rocks of the Aguapei Group which is equivalent to the Bolivian Sunsás Group (1300-950 Ma, Litherland et al., 1989) and, the Rio Cagado Suite of unknown age which outcrops concordantly with the Aguapei thrust zone and is considered to be syntectonic to the Aguapei-Sunsás event.

In the mineralized zones, hydrothermal processes provided enhanced
concentrations of K₂O, F, Fe₂O₃ and LREE, and losses of CaO, MgO and FeO in the wallrocks. In general, these changes were related to a probable magmatic contribution to the fluids which is also suggested by positive Ce anomalies detected in some altered basalts (Geraldes & Figueiredo, 1996). Minor contents of Se in pyrite and, Ag and Bi in gold have been found (Figueiredo et al., 1996).

Most of the gold deposits lie along the tectonic contact between the metavolcanic-metasedimentary rocks (Fig. 3) and the Aguapei metasedimentary rocks. Secondly, some gold deposits are hosted by clastic sedimentary rocks, schists and granitoids. Disseminated and vein controlled mineralization are commonly found in volcanic host rocks whereas sedimentary rock or granite hosted deposits are mainly formed by veins. The ore veins consist of quartz, pyrite and gold, and the hydrothermal alteration zones contain quartz, sericite, pyrite, and magnetite (altered to hematite). Chalcopyrite, galena and sphalerite only occur in the Onça Deposit.

Figure 3 - Schematic W-E profile of the Onça deposit. The vein is 8 to 10 meters thick and more or less 400 m in length. The mineralized vein show quartz, pyrite, chalcopyrite, sphalerite and gold.

The host rocks in the Onça Deposit (Fig. 2) comprise schists and quartzites of MVSS and the ore body is a vein 8 to 10 m thick about 400 m long, with direction N20W/50°SW.

Sulfides and gold are concentrated in only two meters of hanging wall, where there are open pits and underground workings. The quartz vein carries sericite only at the contact with host rock and magnetite is absent.

ANALYTIC PROCEDURES

Three samples from the Onça deposit were chosen for Pb isotope analysis. The samples were crushed and sieved at 10 mesh, and the galena crystals were separated from quartz and other sulfides by hand-picking. Each sample is represented by well crystallized galena with cubic habit.

0.2 g of galena were digested in hot 1.0 N HCl during two hours and the solute was collected to separated lectures in the spectrometer. The residue was digested again in 2.5 N HCl during two hours (with heating) and the solute was collected. The last solids were totally digested in a 9.0 N HCl. The three solutes were then gently evaporated to dryness. The materials were loaded on rhenium filaments using the standard silica gel phosphoric acid technique and analyzed in a VG 354 solid-source mass spectrometer at 1.250 °C.

The international standards for Pb isotopes used during the laboratory are presented in Table 1 with their respective values obtained at the CPGeo.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Pb²⁰⁶ / Pb²⁰⁴</th>
<th>Pb²⁰⁷ / Pb²⁰⁴</th>
<th>Pb²⁰⁸ / Pb²⁰⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBS981</td>
<td>16.9371</td>
<td>15.49175</td>
<td>36.7213</td>
</tr>
<tr>
<td>NBS982</td>
<td>36.7390</td>
<td>17.19971</td>
<td>36.7449</td>
</tr>
</tbody>
</table>

Thirteen samples of galena from the Onça deposit were cut and polished with alumina for petrographic analysis.
The polished sections were carbon coated with Bendix/CVC for microprobe analyses. The CAMECA SX50 electronic microprobe, operated by the Instituto de Geociências-UnB (Universidade de Brasília), was used for analyses of one galena crystal chosen due to its well formed cubic habit and absence of inclusions. In the crystal fourteen points for the elements Zn, Pb, Cu, Fe, Bi, As, Te, Au and Cd were analyzed, using laboratory standards. Specific conditions of the microprobe were: acceleration potential 15 kV; current 26 mA; data collection time 5 or 10s and beam diameter 40 μm.

Fluid inclusions hosted in quartz grains obtained from the same samples where the galenas crystals were collected were studied. Thin section thickness was variable, in the range of 50μm to 150μm, because of the variations of the size of the quartz grains and the level of mylonitization of the grains and the influence of this in the size of the fluid inclusion.

The microthermometry data were obtained in a Linkan TMSG-600 cooling/heating stage coupled to a JENA-POL-ZEISS microscope. The calibration curve was done with specific standards of the SYNFLINC. The double-polished sections were then analyzed by Raman spectroscopy before the second phase of microthermometry (with temperature about 600°C) to avoid decrepitation of the fluid inclusions. This procedure allows the determination of the following phase transition temperatures: melting of CO₂ (TfCO₂), eutectic (Tₑ), ice melting (TfH₂O), melting of clathrate (Tfcl), CO₂ homogenization (TTH₂O) and total homogenization (Tht).

TfCO₂ indicates the presence of others volatils phases, Tₑ can indicate dissolved cations in the aqueous phase composition of the fluids, Tfcl and TfH₂O provide information about the salinity of the liquid phase. TTH₂O indicates the density of the carbonic phase and Tht of fluids inclusions indicates a minimum trapping temperature.

The presence of CO₂, CH₄, N₂ and H₂S in fluids inclusions was checked using multichannel with a CCD T64000 JOBIN-YVON laser-Raman microprobe attached to a OLIMPICUS-BHS microscope and a video system. These analyses were made at the laboratory of Instituto de Geociências of UNICAMP. Specific conditions of this equipment were: Ar⁺ source laser with a wavelength of 514.5 nm (green), and 50 mW power during 300 sec. on the sample.

RESULTS AND DISCUSSION

Isotopic analyses
The results of nine analyses of three different samples of galenas are shown in Table 2, where ²⁰⁸Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb and ²⁰⁸Pb/²⁰⁴Pb ratios are separated in three different fractions obtained during the leaching (1.0, 2.5 and 9.0 N of HCl).

Pb isotope composition for galena from Onça deposit shows low variations from the core to the edge of the same crystal, and these results are not in agreement with the assumption that the crystal started its growth in the actual core and that took place essentially concentrically. When the Pb isotope compositions are plotted in the ²⁰⁷Pb/²⁰⁴Pb x ²⁰⁸Pb/²⁰⁴Pb graphic (Fig. 4) they form a linear trend (or mixing line described by Wilton, 1991; Bierlein et al., 1996). It is possible that the crystal growth rate was not constant with time, or that the depositing solution was not changing linearly with the time. An example of a similar conditions to the Onça deposit is described by Austin & Slawson (1961) that measured Pb isotopic variations in Hansonburg deposit (New Mexico) obtained in different parts of galena crystals. The variation for ²⁰⁸Pb/²⁰⁴Pb and for ²⁰⁷Pb/²⁰⁴Pb is much higher than
Table 2 - Pb isotope results. Each sample was leaching with HCl 1.0 N, 2.5 N and 9.0 N. Following plumbumtectonics (Zartman & Doe, 1981) this results lie on the upper Crust curve and orogeno curve of Pb isotope evolution.

<table>
<thead>
<tr>
<th>Sample</th>
<th>$^{206}\text{Pb}/^{204}\text{Pb}$</th>
<th>$^{207}\text{Pb}/^{204}\text{Pb}$</th>
<th>$^{208}\text{Pb}/^{204}\text{Pb}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onça I (1.0 N)</td>
<td>36.646</td>
<td>15.606</td>
<td>17.585</td>
</tr>
<tr>
<td>Onça I (2.5 N)</td>
<td>36.375</td>
<td>15.499</td>
<td>17.584</td>
</tr>
<tr>
<td>Onça I (9.0 N)</td>
<td>36.440</td>
<td>15.523</td>
<td>17.498</td>
</tr>
<tr>
<td>Onça II (1.0 N)</td>
<td>36.463</td>
<td>15.522</td>
<td>17.675</td>
</tr>
<tr>
<td>Onça II (2.5 N)</td>
<td>36.403</td>
<td>15.528</td>
<td>17.657</td>
</tr>
<tr>
<td>Onça II (9.0 N)</td>
<td>36.760</td>
<td>15.638</td>
<td>17.734</td>
</tr>
<tr>
<td>Onça III (1.0 N)</td>
<td>36.551</td>
<td>15.562</td>
<td>17.677</td>
</tr>
<tr>
<td>Onça III (2.5 N)</td>
<td>36.434</td>
<td>15.539</td>
<td>17.660</td>
</tr>
<tr>
<td>Onça III (9.0 N)</td>
<td>36.433</td>
<td>15.539</td>
<td>17.668</td>
</tr>
</tbody>
</table>

Figure 4 - The results of $^{208}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$ display a linear trend within most of the galena crystals of Onça deposits. This trend is interpreted as due a variation in the hydrothermal composition.

The analytical error and must reflect the source region and/or the hydrothermal fluids heterogeneity that formed these mineralized veins. Hart et al. (1981) report Pb isotope variation within a crystal of galena with a range of 4.7% ($^{206}\text{Pb}/^{204}\text{Pb}$) and 2.9% ($^{208}\text{Pb}/^{204}\text{Pb}$), and Doe & Delevaux (1972) reported a Pb isotope variation in the Missouri district deposit as a whole in the range 5.9% ($^{203}\text{Pb}/^{204}\text{Pb}$) and 2.0% ($^{208}\text{Pb}/^{204}\text{Pb}$). In this way the total range of Pb isotope ratios observed within the single crystals may be larger than that observed throughout the rest of the mine.

Two additional interpretations may explain changes in the isotopic composition of lead ores with continuing deposition.

The first suggests that radiogenic lead was probably collected as a contaminant by an isotopically homogeneous ore fluid when the fluids passed through the rock, intervened between
the site of fluids that travel through a
given fracture or similar permeable zone
should extract relatively large quantities
of radiogenic lead. Later fluids passing
through the same conduits should en-
counter a decreasing amount of extract-
able radiogenic material adjacent to the
fracture and thus show corresponding
decreases in their radiogenic content as
time progresses.

The second is based on the as-
sumption of an isotopically inhomoge-
neous source for the mineralizing solu-
tions. Thus, when the ore solution
leaves the source area, the readily mo-
ibilized radiogenic lead component
leaves the source in the early solutions
(because of its high mobility), and the
radiogenic content of the ore solutions
should again decrease with increasing
time (Austin & Slawson, 1961).

Local variations in physicochemical
conditions create scattered deposi-
tional sites, with some places where the
content are shifted with time. Moreover,
the entire favorable site was never fully
permeated by ore-bearing fluids. Some
areas may have been protected, as a re-
sult of sealing by early silica deposition.
Other areas may have received only
evaporated solutions, and then have re-
mained stagnant for long periods, receiving
fresh ore solutions only intermittently,
as early deposition would change the
permeability of surrounding areas.

Although we cannot be confident
about the significance of these relatively
small isotopic variations within a same
crystal until more detailed studies are
conducted, the overall trend may be the
result of either a mixing of two reservoirs
or contamination by host rocks, as
described by Changkakoti (1986) for the
Great Bear Lake silver deposit. The high
$^{207}\text{Pb}/^{206}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$ ratios
indicate a significant influence of old
continental crust, i.e., Pb isotope ratios
indicate a high U/Pb and low Th/Pb for
the Pb source, such as the upper crust,
before incorporation in galena crystals.

The Pb contamination of the fluids
at the crustal stage may have taken
place either when the hydrothermal so-
lution originated from an intermediate
magma (Rio Cagado suite), or from
deep fluids of a regional metamorphism
(Aguapeí event) pervading the supra-
crustal hosts (MVSS). This suggests at
least two or more stages for the lead
isotope evolution (Stacey & Kramers,
1975; Cummings & Richards, 1975;
Zartman & Haines, 1988), including the
Sunsás/Aguapeí orogeny.

Petrography and trace elements anal-
ysis

Macroscopically, the ore of Pontes
e Lacerda gold district consists mainly
of pyrite, but petrographic study reveals
two sulfide parageneses. The first one
presents only pyrite and gold; the sec-
ond presents mainly pyrite and small
amounts of calcopyrite, galena, sphaler-
ite and gold. These minerals present
textures of intergrowth indicating hy-
drothermal source origin, characterized
by the intergranular surfaces formed
during the temperature decrease.

The polymetallic paragenesis was
observed only in the Onça deposit and is
composed of pyrite (90%), chalcopyrite
(6%), galena (2%) and sphalerite (2%).
Pyrite occurs as subhedral grains inter-
grown with chalcopyrite. Grains of
chalcopyrite, galena, sphalerite occur in
the interior and at the edge of pyrite.

Galena occurs smaller as blebs
in the cores, or as larger better-formed
crystals at the borders of pyrite grains. It
is also observed as rims involving pyrite
grains or, in one case, as fracture filling
of pyrite.

The analytical results of the chemi-
ical composition of the galena is
presented in Table 3. This grain was
chosen due its euhedral habit and the
absence of inclusions. The results of the
cross section of the analyzed elements
Table 3 - Mineral chemistry results in galena cross-section from Onça deposit (0=not detected.

<table>
<thead>
<tr>
<th>points</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>elem.</td>
<td>% wt</td>
</tr>
<tr>
<td>Zn</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>0.01</td>
<td>0.05</td>
<td>0</td>
<td>0.06</td>
<td>0.24</td>
<td>0.04</td>
<td>0.08</td>
<td>0.39</td>
<td>1.23</td>
<td>1.12</td>
<td>1.12</td>
</tr>
<tr>
<td>Pb</td>
<td>86.2</td>
<td>86.1</td>
<td>85.8</td>
<td>86.2</td>
<td>86.1</td>
<td>85.8</td>
<td>85.9</td>
<td>85.8</td>
<td>86.1</td>
<td>86.6</td>
<td>86.3</td>
<td>86.8</td>
<td>86.1</td>
<td>87.1</td>
</tr>
<tr>
<td>Cu</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fe</td>
<td>0.03</td>
<td>0.04</td>
<td>0</td>
<td>0.03</td>
<td>0.01</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0.31</td>
<td>0.03</td>
<td>0</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Bi</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>13</td>
<td>13</td>
<td>13.2</td>
<td>13.1</td>
<td>13.2</td>
<td>13</td>
<td>12.8</td>
<td>12.8</td>
<td>12.9</td>
<td>13.1</td>
<td>13.1</td>
<td>13.2</td>
<td>13</td>
<td>13.3</td>
</tr>
<tr>
<td>As</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Sb</td>
<td>0</td>
<td>0.11</td>
<td>0.15</td>
<td>0.04</td>
<td>0.18</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
<td>0.05</td>
<td>0.07</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Ag</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
<td>0.15</td>
<td>0.08</td>
<td>0</td>
<td>0.12</td>
<td>0.08</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Se</td>
<td>0.52</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.07</td>
<td>0.09</td>
<td>0</td>
<td>0.02</td>
<td>0.11</td>
<td>0.06</td>
<td>0</td>
<td>0.13</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>Te</td>
<td>0.04</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>0.07</td>
<td>0</td>
<td>0.02</td>
<td>0.05</td>
<td>0.03</td>
<td>0</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Au</td>
<td>0</td>
<td>0.07</td>
<td>0.03</td>
<td>0</td>
<td>0.06</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>0</td>
<td>0.05</td>
<td>0.18</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0.19</td>
<td>0.25</td>
<td>0</td>
<td>0.09</td>
<td>0.02</td>
<td>0</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>total</td>
<td>99.8</td>
<td>99.5</td>
<td>99.6</td>
<td>99.7</td>
<td>100</td>
<td>99.1</td>
<td>99.2</td>
<td>99.3</td>
<td>99.3</td>
<td>100</td>
<td>100</td>
<td>101</td>
<td>101</td>
<td>102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% at.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>0.08</td>
<td>0</td>
<td>0.02</td>
<td>0.09</td>
<td>0</td>
<td>0.11</td>
<td>0.45</td>
<td>0.08</td>
<td>0.14</td>
<td>0.71</td>
<td>2.21</td>
<td>1.99</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>50.2</td>
<td>50.5</td>
<td>49.8</td>
<td>50.2</td>
<td>49.8</td>
<td>50.4</td>
<td>50.7</td>
<td>50.5</td>
<td>50.6</td>
<td>50.1</td>
<td>50</td>
<td>49.2</td>
<td>48.8</td>
<td>48.8</td>
</tr>
<tr>
<td>Cu</td>
<td>0</td>
<td>0</td>
<td>0.18</td>
<td>0.13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fe</td>
<td>0.07</td>
<td>0.08</td>
<td>0</td>
<td>0.07</td>
<td>0.01</td>
<td>0.02</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>0.67</td>
<td>0.06</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Bi</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>48.8</td>
<td>49.1</td>
<td>49.5</td>
<td>49.3</td>
<td>49.4</td>
<td>49.3</td>
<td>48.8</td>
<td>48.5</td>
<td>49</td>
<td>48.8</td>
<td>49.1</td>
<td>48.3</td>
<td>48.3</td>
<td>48.3</td>
</tr>
<tr>
<td>As</td>
<td>0.09</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Sb</td>
<td>0</td>
<td>0.11</td>
<td>0.15</td>
<td>0.04</td>
<td>0.18</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
<td>0.05</td>
<td>0.07</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Ag</td>
<td>0</td>
<td>0.09</td>
<td>0.11</td>
<td>0.05</td>
<td>0.09</td>
<td>0.04</td>
<td>0.13</td>
<td>0.09</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>0.05</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Se</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
<td>0.11</td>
<td>0.14</td>
<td>0</td>
<td>0.03</td>
<td>0.17</td>
<td>0.09</td>
<td>0</td>
<td>0.19</td>
<td>0.41</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Te</td>
<td>0.04</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>0.06</td>
<td>0.04</td>
<td>0.05</td>
<td>0.03</td>
<td>0</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Au</td>
<td>0</td>
<td>0.04</td>
<td>0.02</td>
<td>0</td>
<td>0.04</td>
<td>0.03</td>
<td>0.01</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>0</td>
<td>0.05</td>
<td>0.19</td>
<td>0.17</td>
<td>0.29</td>
<td>0</td>
<td>0.2</td>
<td>0.27</td>
<td>0</td>
<td>0.1</td>
<td>0.02</td>
<td>0</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>total</td>
<td>100</td>
</tr>
</tbody>
</table>

from the core to the edge are shown in two columns as wt % and atom % in Figure 5 and Figure 6.

Both Figures 5 and 6 show the major element zoning (lead and sulfur) and trace element zoning (antimony, silver, zinc and selenium). Pb and S composition present the same pattern in the cross-section, with increasing in wt % contents from the core to the edge and decreasing in atom %. In the core of the crystal the Pb present an average of 86.0% and S the media of 13.1%, below the stoichiometric PbS values (86.6% and 13.4%, respectively). Going towards the edge, the concentrations of both elements are close to PbS stoichiometric values. In this way, the values of Pb in atom % increases, whereas for S these values decrease from the core to the edge of the galena crystal.

The positive variation of Pb % wt concentration from the core to the edge of galena crystal may be explained by decrease of Sb and Ag contents (Sharp & Buseck, 1993; Sharp et al., 1990). Both elements replace Pb in the galena lattice, and if silver is present, to a lesser extent, the galena formed will be almost pure PbS (Foord et al., 1988; Pring & Williams, 1994). The positive variation of S atom % values from the...
core to the edge of galena crystals may result from the increase of Se contents, which usually replace S in the PbS-PbSe-PbTe series (Cabri et al., 1985; Liu & Chang, 1994).

Increasing contents of Zn wt % and atom % may be due to the presence of microscopic sphalerite inclusions within the grains of galena detected by the microprobe but not detected by microscopy. ZnS crystallizes later than PbS, and possibly only after a decrease in temperature or due to a variable source. ZnS crystals are observed in
polished sections forming small grains or blebs within or at the edge of the pyrite crystal, suggesting that the appearance of ZnS is due to exsolution during a temperature decrease.

On other hand, the assumption that Sb and Ag replace Pb at relatively high temperatures, and that with decreasing temperature this replacement becomes difficult (as described by Newberry et al., 1991), is not convincing in this case, because the same decrease of temperature would tend to decrease the Se contents replacing S (Fig. 6).
4). The variation evidently resulted from progressive changes in the chemical composition of the ore-forming fluid due, as with the isotopes, to changes in the source of these solutes and/or to the changes in the host contribution. Simon et al. (1994) showed substitution of As for Sb, and chemical zonation suggesting rapid changes in the chemistry of the mineralizing fluids of Sacarim deposit, Romania, but these changes were not observed here (Fig. 5).

Cu, Fe, Te, Au and Cd have no concentrate variations in the galena cross section, probably due to the constant source of the hydrothermal solute contents for these elements.

Fluid inclusion study

Fluid inclusion data were obtained by microthermometry and laser-Raman spectroscopy. Petrographic study of quartz veins (galena grains host) allowed the definition of distinct fluid patterns (types) between samples of mineralized and barren veins (see Fig. 3) of the Onça deposit.

The samples of the barren or poorly mineralized vein have white quartz, rarely yellow or pink, of milky brightness in centimetric grains with uniform extinction. The fluid inclusions observed are 20 to 40 μm in size with random three-dimensional or isolated distributions. At room temperature, the fluid inclusions have two liquid phases (H₂O and CO₂) and CO₂ gas, and the liquid/gas ratios are in the range of 0.6 to 0.01. The main shape of these fluid inclusions is elongated and sometimes irregular.

The samples collected in the mineralized vein present colorless small crystals of strongly recrystallized quartz. These crystals have uniform extinction, and their fluid inclusions have the same characteristics as the fluid inclusions of the barren portion of the vein.

In both mineralized and barren veins secondary trails of aqueous fluid inclusions, 10 to 40 μm in size, with irregular shapes and two phases (liquid and vapor) were observed. Other secondary families of small (5 to 10 μm) aqueous fluid inclusions were observed in the form of trails. Both secondary trails of fluid inclusions crosscut the quartz crystal boundaries in the mineralized portion of the vein, and these were formed apparently after three-phase fluid inclusions. These fluid inclusions were analyzed only to obtain their ice melting temperature (Tf,H₂O), yielding values between -0.7 to -0.3°C, indicating very low salinity and possible meteoric origin. Petrography and fabric suggest (trail fluid inclusions crossing the mineralized and barren portion of the veins) they have no relation to the mineralizing solutions.

The microthermometric results of the three-phase fluid inclusions, due to their possible relationship with the gold transport and deposition, are presented in Figures 7 and 8. The barren vein three-phase fluids inclusions exhibit melting temperature of solid CO₂ (Tf₂CO₂) between -56.5 and -57.5 °C. The clathrate melt temperature (Tf₃) was between 7.5 e 10.5 °C. Homogenization temperature of CO₂ (T₃CO₂) vary from 23.0 to 30.0°C. Total homogenization temperatures (Tₜ) vary from 200 to 310°C, and the homogenization may occur to a vapor phase or to a liquid phase.

In the mineralized vein the fluid inclusions present melting temperature of solid CO₂ (Tf₂CO₂) slightly above the respective Tf₂CO₂ of barren portion of the vein, between -56.5 and -57.0°C. These fluids inclusions exhibits Tf₃ between 6.0 e 10.0°C. Homogenization temperature of CO₂ vary from 24.0 to 30.0°C. Tₜ occur in the range 220 to 300°C and also may occur either to vapor or to liquid phase.

The Raman spectra of fluid inclu-
Figure 7 - Microthermometry results of fluid inclusions. (Upper) The most barren vein fluid inclusion present \(T_{FCO_2} \) between -56 and -57.5°C and \(T_m \) between 10.5 and 7.5°C (Lower). The most mineralized vein fluid inclusions present \(T_{FCO_2} \) between -56 and -57°C and \(T_m \) between 10.5 and 6°C (n = number of fluid inclusion).

Figure 8 - Microthermometry results of fluid inclusions. (Upper) Barren vein fluid inclusion presents \(T_{FCO_2} \) between 23 and 30°C and \(T_m \) between 310 and 200°C (Lower). Mineralized vein fluid inclusions presents \(T_{FCO_2} \) between 24 and 30°C and \(T_m \) between 300 and 220°C (n = number of fluid inclusion).
sions from the barren and mineralized portions of the vein are shown in Figure 9. The main difference between the two spectra of the related fluid inclusions is the lack of CH₄ peak in the fluid inclusion of the mineralized vein, in agreement with the microthermometry results, i.e., the melting temperature of solid CO₂ below -56.6°C, which indicates the presence of other dissolved gases commonly interpreted to be CH₄ and/or N₂ (Burrus, 1981; Van Der Kerkhof, 1988).

![Figure 9 - Raman spectra of the fluid inclusions from the barren portion indicate the presence of CO₂ and CH₄ (upper) and from the mineralized portion indicate only CO₂ (lower) in the volatile phases. Area A was used to calculate % mol of CH₄.](image)

Calculations of the salinity of both types of vein fluid inclusions were based on the melting points of clathrate (CO₂-H₂O-NaCl model Collins, 1979), and these scatter in the range 0.5 to 8.7 wt % equivalent of NaCl (Fig. 10). Salinities calculated from ice-melting temperature are expected to be higher because of the capture of a part of the water by clathrate.

![Figure 10 - According to this graph the salinity of fluid inclusions is between 0.5 and 8.7 wt% equivalent of NaCl (adapted from Collins, 1979).](image)

The existence of one aqueous liquid phase together with two carbonic phases (one liquid and other gaseous) with different filling ratios suggests that the trapping of the hydrothermal solutes occurred at an unhomogeneous stage due probably to immiscibility of original fluid. This process is described by several authors (see experimental data by Sondergeld & Lurcotte, 1979) as being responsible for the instability of the transported complexes of rare metals and their deposition. Therefore, the trapping temperature must be between 200 and 300°C.

Sulfides in the ore indicate the presence of S in the original hydrothermal solutes, notwithstanding laser-Raman spectroscopy detected only CO₂ in the composition of fluid inclusions of mineralized portion of the vein (Fig. 8). This probably resulted by the reaction of all S available or because very low concentrations of H₂S and HS⁻ would not detected by the Raman below the detection limit. In the barren portion of the vein, CH₄ contents (calculated using the area A in Fig. 8) yielded average values of 8 mole % in the fluids inclusions and the N₂ content being negli-
being negligible. This composition suggests that the metals transport may be occur by \((HS)_{2}^2\) and/or \(Au[R_{2}(NCS)_{2}]\) complexes, where \(R = \text{C}_2\text{H}_5\) or \(\text{C}_3\text{H}_7\).

The presence of CH$_4$ in the barren portion of the vein is not in agreement with the results in literature. Usually this gas is related to formation of mineralizing hydrothermal solutes, because of its capacity to transport metals (including Au) through ionic complexes. In addition, the presence of CH$_4$ may either enhance immiscibility or the O$_2$ fugacity of the fluid.

The physical continuity and interdigitation of both portions (mineralized and barren) suggest a continuous emplacement, supported by the presence of the fluid inclusions with same shape and distribution and same total temperature of homogenization. The petrographic characteristics of both portions indicate the following events events:

1. emplacement and crystallization of all the quartz vein, with trapping of a CH$_4$-bearing fluid inclusion in boiling process;

2. the mineralized portion passes by a process of fracturing and comminution of quartz, following a recrystallization of the quartz in small crystals, in which the original fluid inclusions were preserved. This cataclastic process resulted in better permeability of the rock and allowed the percolation of end-term solutes, enriched in rare metals and deposition of Fe, Cu, Pb and Zn sulfides and gold.

CONCLUSIONS

Petrographic study, Pb isotope, microprobe, microthermometry and Raman spectrometry allows the interpretation of the evolution, origin and relationship between the mineralized and barren portions of the vein from the Onça gold deposit.

The Pb isotope-mineral chemistry allows the identification of a variable source for the Pb isotopes, major elements (S and Pb) and trace elements (Sb, Ag, Zn and Se) with increasing or decreasing of the contents during the growth of galena crystals. The result analysis suggests that the variation may be due to the contamination of the hydrothermal solution by mixing with supracrustal rocks of MVSS.

The mineral chemistry-fluid inclusions point to two possible sources for the hydrothermal solutions:

1. deep solutions that originated during the regional Aguapei/Sunsas metamorphic event where the solutions present aqueous-carbonic compositions and low salinity. Geologic control of the mineralization is in agreement with this hypothesis because the ore bodies are syntectonic with the foliation formed during the Aguapei event.

2. high contents of base metals indicate a plutonic source influence in the origin of the fluids. Geologic controls are also in agreement with this hypothesis, because the presence of intruded pegmatites in agreement with the mineralizing event.

The Pb isotope-fluid inclusions relations leads us to conclude that the composition of the hydrothermal solutes changes during the emplacement of the quartz veins and the growth of galena crystals. The earlier solutes had a hydrocarbon in their composition and were more radiogenic. The later solutes had base metals in the composition and were less radiogenic.

In conclusion, we suggest that the Onça gold deposit originated by hydrothermal solutions during a metamorphic event with the influence of acid plutonism. These solutes have had an important influence from the host rock for isotope compositions, as well as major and trace elements for the growth of ore-forming minerals.
ACKNOWLEDGE
M.C. Geraldes thanks to FAPESP grants nº 94/6122-8. This work is a contribution to IGCP 342 project.

REFERENCES

ZARTMAN, R.E.; HAINES, M. (1988) The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs - A case for bi-

M.C. Geraldes - Instituto de Geociências, Universidade de São Paulo, Caixa Postal 11.348, CEP 05422-970, São Paulo, SP, Brasil.

Recebido 02/10/96
Aprovado 28/11/96