RELATIVE RATES OF PHOTOSYNTHESIS AND STANDING STOCK OF THE NET PHYTOPLANKTON AND NANNOPHANLKTON

C. Teixeira

INTRODUCTION

Some researches, beginning with Gran (1932), Steemann Nielsen (1938; 1957), Riley (1941), Harvey (1950), Wood & Davis (1956), Yentsch & Ryther (1959), Teixeira & Kutner (1962) and others, showed that many phytoplankton species in most regions of the oceans are too small to be retained by the finest silk plankton nets.

Based on the size of the organisms, the phytoplankton is generally divided into two principal groups: nannoplankton and net phytoplankton (= microplankton), and sometimes a third group, ultraplankton. The size limits of these groups are approximately the following: 0.5 to 50 μm for nannoplankton, 50 to 500 μm for net phytoplankton and 0.5 to 10 μm for the ultraplankton (Strickland, 1960).

All the observations agree entirely on the importance of the nannoplankton in the production of organic matter in the oceans, but knowledge on the quantitative relationship between nannoplankton and net phytoplankton in most regions of the oceans is still very scarce.

The primary purpose of this paper is to verify the importance of nannoplankton in the production of organic matter in the oceans but also to determine the relative standing stock of nannoplankton and net phytoplankton, and the differences which exist between environments of coastal and oceanic waters in an Equatorial region (Fig. 1).

For this purpose, the Carbon-14 technique was used to determine the relative photosynthesis, and cell counts were made to determine the relative standing stock.

The field work was undertaken on board of the destroyer "Bertioga" between 20 and 23 March 1963, during the "Equatorial Publ. n Q 191 do Insto Oceano da USP o..."
Expedition of the International Cooperative Investigations of the Tropical Atlantic (ICITA).

The samples were taken from the surface and poured through a silk plankton net (aperture size = 65 μm) to separate net phytoplankton from the nannoplankton. Equal aliquots of the filtered samples and raw water samples were taken for photosynthesis measurements and cell counting.

The carbon fourteen uptake was determined in a 125 ml bottle, using 10 microcuries (μCi) of C-14, and incubating each sample for 2-4 hours in the shipboard incubator at the sea-surface temperature, and exposed to solar radiation. The temperature in the bath showed some fluctuation but never exceeded that of the sea-surface by more than 2.0° C during the experimental time, and usually less.

The incubated samples were filtered through AA-millipore filters, which were dried in a dessicator and subsequently treated with hydrochloric acid vapour to remove any inorganic carbonate activity from the filtered phytoplankton.

The radio-activity was measured with a end-window Geiger-Müller counter tube (Phillips Equipment), and the results obtained have not been corrected for isotope effect nor phytoplankton respiration, since the values are only relative.

For the counting of the cell number, the plankton was preserved in neutral formalin and was allowed to settle overnight in a 20 ml cylindrical chamber. Counts were made at 400 and 1,000 X with a Zeiss inverted microscope.

RESULTS AND DISCUSSION

Only a few years ago (Holmes, 1956; Steemann Nielsen & Jensen, 1957; and Yentsch & Ryther, 1959) investigations were made to verify the relative importance of nanno and net phytoplankton in terms of rate of photosynthesis.

For this purpose some measurements were carried out in plankton-rich waters, and the results of these experiments showed a pronounced difference between nanno and net phytoplankton, not only in photosynthetic terms, but in cell numbers as well.

It should be noted that the uptake values for nannoplankton probably may be underestimated when we consider that some amount of the photosynthetic capacity may occur during filtration (Steemann Nielsen & Jensen, 1957).

Self-Explanatory
From the figures obtained (Table I) it may be seen that the organisms retained by the silk represent an average of only 9.93 % in terms of photosynthesis and 22.20 % in numbers of organisms of the total phytoplankton. However the use of filters with pore size of less than $0.5 \mu m$ (Holmes, 1956) is necessary to avoid losses of ultraplankton.

From the values found here as well as those reported by different authors and from different regions sampled, it can be shown that the nannoplankton elements play a more important role in the production of matter in the oceans than the larger cells. Some authors (Atkins, 1945; Wood & Davis, 1956; and others) have claimed greater importance for autotrophic flagellates, but unfortunately we do not know what fraction of the nannoplankton is composed of flagellates, diatoms, or other small autotrophic and heterotrophic organisms.

Recently Collier & Murphy (1962) were able to isolate several species and genera of small diatoms, some epiphytes, concerning individual cells have a diameter of $1.5 \mu m$ (Chaetoceros, Thalassiosira, Nannochloris) and few that have a diameter of at least partially the species of diatoms (Bacillaria, Bacillariophyceae). The surface-to-volume ratio suggests that the populations of small organisms, measured in density, makes it possible to evaluate the significance of the present time.

The results obtained by several authors show clearly that the nannoplankton elements are important to the total primary production of the oceans. For example, in the North Central Pacific (Wood & Davis, 1956), in the Sargasso Sea (Riley, 1957), in the Sargasso Sea off Bermuda (Hulburt, 1960), in the Equatorial waters off northern Brazil (Table I), demonstrate the small percentage of the net autotrophic production.

Although the total primary production of these tropical regions is very low, the nannoplankton elements are relatively more important than in the richer waters. The marine diatoms, because of their high photosynthesizing rate, perform an important role. According to Collier & Murphy (1962) the populations of small organisms...
In the environment may be significant, because of the power of marine ultraviolet and the capability for rapid multiplication even under minimal nutrient concentration conditions.

TABLE I

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Latitude</th>
<th>Relative photosynthesis</th>
<th>Relative standing stock</th>
<th>Relative cell numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.3.63</td>
<td>04°06.3'N</td>
<td>87.00</td>
<td>71.50</td>
<td>80.20</td>
</tr>
<tr>
<td>2</td>
<td>22.3.63</td>
<td>03°02.0'N</td>
<td>88.30</td>
<td>73.70</td>
<td>80.00</td>
</tr>
<tr>
<td>3</td>
<td>22.3.63</td>
<td>01°05.0'N</td>
<td>90.60</td>
<td>77.90</td>
<td>90.60</td>
</tr>
<tr>
<td>4</td>
<td>23.3.63</td>
<td>00°39.8'N</td>
<td>89.00</td>
<td>78.00</td>
<td>89.00</td>
</tr>
<tr>
<td>5</td>
<td>23.3.63</td>
<td>00°03.0'N</td>
<td>91.60</td>
<td>82.70</td>
<td>92.30</td>
</tr>
<tr>
<td>6</td>
<td>23.3.63</td>
<td>17°18.3'S</td>
<td>93.60</td>
<td>83.00</td>
<td>92.70</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>Sta. No.</th>
<th>Distance from the coast (in miles)</th>
<th>Relative production</th>
<th>No. of cells per liter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>325</td>
<td>5.3</td>
<td>7.60</td>
</tr>
<tr>
<td>2</td>
<td>255</td>
<td>5.3</td>
<td>12.00</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>7.9</td>
<td>10.20</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>18.4</td>
<td>15.60</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>91.8</td>
<td>82.50</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>100.0</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Relative values showing the variation of C-14 uptake and cell numbers at the six stations from coastal waters to open sea. The greatest rate of the C-14 uptake and cell number is put at 100%.
The relative photosynthesis measurements in coastal and in oceanic waters show the effect of the proximity of land which was also apparent at the standing stock.

Many papers have reported the "land-mass" effect as an increase of phytoplankton standing stock, but primary productivity measurements have been made more rarely.

The results presented in this paper show a consistent increase as we approach land. A comparison of the magnitude of the production of the station near to the coast (Station 6; Table I) to the station farther from the coast (Station 1; Table I) shows a higher rate of carbon fixation and a larger standing stock of phytoplankton in coastal waters than at the station located 300 miles offshore, where the rate of carbon fixation and the population stock were very low.

However, these measurements can indicate only a general picture of photosynthetic potential of two different water masses, since only the productivity index can really show if a certain area is more or less productive than others.

The increase landwards has been attributed by many authors to varying factors, such as salinity, nutrient properties of the water, temperature, and other factors, but at present, the question whether or not the net primary productivity and the primary productivity are greater at inshore locations (see Strickland's discussions, 1960) is still an open problem.

SUMMARY

Some experiments on C-14 uptake and cell numbers were made with the purpose of comparing nannoplankton and net phytoplankton from surface seawater samples collected at six stations in Equatorial waters (Fig. 1). The results of these experiments showed a pronounced difference between nannoplankton and net phytoplankton in photosynthesis and in cell numbers (Table I).

The net phytoplankton represents an average of as little as 9.93% of total photosynthesis and 22.20% in numbers of organisms of total phytoplankton.

The results obtained in coastal and in oceanic waters show that the effect of the proximity of land on standing stock and upon primary production is well marked (Table II).

The results obtained are discussed and compared with data of earlier papers.

RESUMO

O autor teve como principal escopo ao levar a efeito e estes experimentos, verificar a importância relativa de duas frações obtidas artificialmente do fitoplâncton natural, o nanoplâncton e a fração retida por uma rede (Teixeira & Kutner, 1962).

As amostras foram coletadas em seis estações a partir das proximidades da costa norte do Brasil até cerca de 300 milhas para fora. Todas as amostras foram submetidas a tratamentos de incubação, e os resultados obtidos em nannoplâncton e net phytoplankton foram comparados.

Os resultados obtidos em geral e em aspectos gerais, mostram que a presença de land-mass tem um efeito marcante no fitoplâncton, sendo mais evidente em nannoplâncton que no net phytoplankton.

Os resultados obtidos são discutidos e comparados com dados de estudos anteriores.
... na superfície e a seguir separadas em duas porções; uma parte foi filtrada numa rêde de sê da com poros de 65 μm de diâmetro para reter o "net" fitoplâncton e a outra permaneceu intacta, constituindo-se na amostra do plâncton total; a diferença de valores obtida entre as duas porções constitui o nanoplâncton.

Para a determinação da fotossíntese, foi usado o método do Carbono 14 (Steemann Nielsen, 1952) e para avaliar o estoque das espécies foi adotado o método de contagem de organismos ao microscópio invertido, após a sedimentação por 24 horas.

Todos os resultados obtidos foram apresentados em percentagens, por serem muito mais representativos do que se fossem apresentados como absolutos.

Dos resultados experimentais, podemos verificar uma pronunciada diferença quantitativa dinâmica e estática entre o nanoplâncton e o "net" fitoplâncton (Tabela I), assim como uma grande diferença quanto ao estoque e à produção do fitoplâncton existente em águas costeiras e oceânicas (Fig. 1).
ACKNOWLEDGMENTS

The author wishes to express the best thanks to Dr. Marta Vannucci and to Dr. Robert W. Holmes for the suggestions and critical review of the work. He also wishes to express his profound gratitude to the "Fundação de Amparo à Pesquisa do Estado de São Paulo" for the grant extended for the work.

REFERENCES

