Abstract

The present work was developed from June 1985 to May 1986. Monthly sampling was performed in estuarine and coastal adjacent habitats. Samples were collected using bottom trawl, beach seine and bottom pots. Fourteen species (6538 individuals) of decapod brachyurans were identified, being Callinectes danae the most abundant in all habitats, followed by C. sapidus and Portunus spinimanus. Bottom trawling prove to be the more efficient fishing gear, catching fourteen species, while beach seine caught eight species and estuarine catches, using bottom pots, were constituted by five species, all of them belonging to the genus Callinectes. The number of females was higher than males for all dominant species, and generally, this number was higher mainly at bay region than at beach and estuarine habitats. The growing of total catches during spring-summer months may be correlated with warmer waters and reproduction patterns. Data on species composition, occurrence, abundance, hydrographic parameters and sampling methods are presented.

Descriptors: Decapoda, Coastal zone, Brackishwater environment, Catching methods, Community composition, Dominant species, Seasonal variations, Environmental factors, Callinectes danae, Callinectes sapidus, Portunus spinimanus, Brazil.

Introdução

A fauna de braquiúros do sistema baía-estuaríodo Santos e São Vicente é, ainda, insuficientemente conhecida, embora essa região tenha muita importância, visto ser grande polo turístico, pesqueiro, comercial e industrial.

Tommasi (1967; 1979) efetuou levantamentos dos organismos bentônicos nessa região, encontrando de maneira geral, pouquíssimos crustáceos decápodos, pois seus estudos basearam-se principalmente em coletas com pesador de fundo tipo "Van Veen".

Schemy (1980) estudou aspectos da biologia e fisiologia de Callinectes danae na região externa à Baía de Santos.

Corbisier (1981) estudando a comunidade de bentônica da zona entremarés arenosa no sistema estuarino de Santos, também encontrou poucos exemplares de decápodos braquiúros, sendo todos identificados como Callinectes spp.

Pita et al. (1985a) fizeram um levantamento da família Portunidae no complexo baía-estuaríodo e estudaram a espécie mais abundante, Callinectes danae (Pita et al., 1985b).

O presente estudo adquire muita importância visto que a família Portunidae, com grande número de espécies e das mais abundantes dentre os crustáceos braquiúros em nossas águas, possui relevância no complexo baía-estuaríodo de Santos e São Vicente, em função do que representa como...
fonte de renda para dezenas de pescadores artesanais que operam no estuário (Pita et al., 1985a). Além disso, sob o ponto de vista bioecológico, o síri-azul, principal representante dessa família em nossas costas, é um predador bentônico chave, controlador da abundância, diversidade e estrutura de várias comunidades bentônicas (Hines et al., 1987).

Material e métodos

O material estudado provém de amostras mensais coletadas no sistema baía-estuário de Santos e São Vicente, desde a barra da Baía de Santos até o alto estuário (Fig. 1), sendo analisado de acordo com o ambiente e método de captura em:

BAÍA: De quatro a oito arrastos de fundo em profundidades entre 4 e 15 m (Fig. 1). Cada arrasto, definido com a unidade de esforço, foi efetuado através do B/Pesq. "Veliger II", do Instituto Oceanográfico da Universidade de São Paulo, contra a corrente, de 5 min de duração e velocidade de 2 nós, com um rede camaroneira de 16,7 m de largura na tralha inferior, 20 mm de malha (nó a nó) no corpo e manga e, 15 mm (nó a nó) no sacador. Foram efetuados um total de 84 arrastos, não sendo possível a coleta no mês de outubro devido às dificuldades operacionais da embarcação (Tab. 1).

PRAIA: De 11 a 12 arrastos ao longo das praias de Santos e de São Vicente, em profundidade inferior a 1,5 m (Fig. 1), com rede de calão de 15 m de comprimento, 1,5 m de altura e 5 mm (nó a nó) de malha. Cada arrasto (unidade de esforço) percorreu uma distância aproximada de 150 m, num total de 142 arrastos (Tab. 1).

ESTUÁRIO: De 6 a 20 operações de pesca nos estuários de Santos e de São Vicente e principais rios do complexo (Fig. 1), em profundidades entre 0,5 e 6,5 m, com armadilhas cilíndricas iscadas, de 66 cm...
Tabela 1. Temperatura (TS, expressa em graus C) e Salinidade (SS, expressa em °/oo) médias da água e Número de Operações de Pesca total (EP), por mês, por ambiente e total. BA = Amostras de fundo na Baía de Santos; PR = Amostras de Praias nas praias de Santos e São Vicente; ES = Amostras de Arma­dilhas nos estuários de Santos e São Vicente. * = Sem coleta

<table>
<thead>
<tr>
<th></th>
<th>Junho</th>
<th>Julho</th>
<th>Agosto</th>
<th>Setembro</th>
<th>Outubro</th>
<th>Novembro</th>
<th>Dezembro</th>
<th>Janeiro</th>
<th>Fevereiro</th>
<th>Março</th>
<th>Abril</th>
<th>Maio</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 1</td>
<td>21,6</td>
<td>20,9</td>
<td>21,6</td>
<td>22,5</td>
<td>* 24,6</td>
<td>26,7</td>
<td>30,4</td>
<td>28,9</td>
<td>28,3</td>
<td>29,6</td>
<td>27,5</td>
<td>23,6</td>
<td></td>
</tr>
<tr>
<td>TS 2</td>
<td>20,9</td>
<td>20,7</td>
<td>21,3</td>
<td>22,6</td>
<td>24,3</td>
<td>27,1</td>
<td>32,8</td>
<td>31,5</td>
<td>30,8</td>
<td>27,6</td>
<td>28,0</td>
<td>22,5</td>
<td></td>
</tr>
<tr>
<td>ES 3</td>
<td>21,0</td>
<td>20,0</td>
<td>22,7</td>
<td>22,5</td>
<td>23,6</td>
<td>29,3</td>
<td>31,8</td>
<td>30,2</td>
<td>27,6</td>
<td>28,5</td>
<td>26,6</td>
<td>24,1</td>
<td></td>
</tr>
<tr>
<td>BA 4</td>
<td>30,4</td>
<td>32,6</td>
<td>32,5</td>
<td>33,0</td>
<td>* 32,0</td>
<td>32,8</td>
<td>31,8</td>
<td>28,6</td>
<td>31,0</td>
<td>28,1</td>
<td>32,3</td>
<td>28,8</td>
<td></td>
</tr>
<tr>
<td>SS 5</td>
<td>29,4</td>
<td>31,6</td>
<td>33,0</td>
<td>32,6</td>
<td>31,2</td>
<td>29,7</td>
<td>30,8</td>
<td>30,9</td>
<td>29,0</td>
<td>31,4</td>
<td>30,8</td>
<td>26,4</td>
<td></td>
</tr>
<tr>
<td>ES 6</td>
<td>18,5</td>
<td>26,5</td>
<td>22,2</td>
<td>19,7</td>
<td>18,8</td>
<td>21,4</td>
<td>21,2</td>
<td>12,3</td>
<td>9,0</td>
<td>18,4</td>
<td>16,9</td>
<td>16,5</td>
<td></td>
</tr>
<tr>
<td>BA 7</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
<td>* 8,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,0</td>
<td>4,0</td>
<td>84,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 8</td>
<td>12,0</td>
<td>11,0</td>
<td>11,0</td>
<td>12,0</td>
<td>12,0</td>
<td>12,0</td>
<td>12,0</td>
<td>12,0</td>
<td>12,0</td>
<td>12,0</td>
<td>12,0</td>
<td>14,2</td>
<td></td>
</tr>
<tr>
<td>ES 9</td>
<td>12,0</td>
<td>12,0</td>
<td>20,0</td>
<td>18,0</td>
<td>11,0</td>
<td>12,0</td>
<td>11,0</td>
<td>11,0</td>
<td>11,0</td>
<td>12,0</td>
<td>12,0</td>
<td>14,0</td>
<td></td>
</tr>
</tbody>
</table>

de diâmetro, 40 cm de altura, 2 bocas de 10 cm de diâmetro e malha de 13 mm (não a nô). As operações de pesca, realizadas com o auxílio de botes motorizados, ti­veram a duração de espera entre 30 e 200 min, sendo padronizado o esforço de pesca (unidade de esforço) para uma ope­ração de 120 min (2 h) (Tab. 1).

Dados de temperatura (através de termômetro de mercúrio, com precisão de 0,1°C) e salinidade (através de refratô­metro óptico, com precisão de 0,5°/oo) da água, foram obtidos concomitantemente às operações de pesca.

Todos os exemplares foram conservados em gelo, identificados, contados, pesa­dos em balança analítica (precisão de 0,01 g) e medidas a largura (distância entre as extremidades dos últimos den­tes antero-laterais) e o comprimento (distância entre as extremidades dos espinhos interorbitais e a margem pos­terior) da carapaça, com auxílio de pa­químetro. Determinou-se o sexo e es­tádio de maturidade das fêmeas ovadas, bem como a ocorrência de mudas.

A abundância relativa e a distribui­ção total para cada espécie, por am­biente, foram representadas pela captura média mensal por unidade de esforço, em número de indivíduos (CPUE).

Este trabalho apresenta resultados da ocorrência, abundância e porcentagem de fêmeas, por ambiente e total.

Resultados

Quanto aos parâmetros hidrográficos, a temperatura mostrou um padrão sazonal em todos os ambientes (Tab. 1 e Fig. 3); junho e julho apresentaram as menores temperaturas (em torno de 20°C) e as maiores ocorreram entre janeiro e feve­reiro (28 - 33°C), sem diferenças signi­ficativas entre as amostras da Baía, Praia e Estuário; maiores diferenças ocorreram nos meses de primavera-verão, com as maiores temperaturas para as es­tações de Praia (Tab. 1 e Fig. 3).

A salinidade mostrou-se constante ao longo dos meses nas amostras da Baía e Praia, com maiores valores, em geral, no inverno e maiores flutuações no verão, com valores ligeiramente menores para as estações de Praia. As amostras do Estuário, de padrão sazonal semelhan­te às anteriores, mostraram uma maior amplitude de valores, principalmente no verão, e com valores médios bem infe­riores (Tab.1 e Fig. 4).

Não foi possível a separação das es­pécies de Callinectes em exemplares com comprimento de carapaça inferior a 15 mm e assim, com exceção de Callinectes sapidus (única espécie possível de ser identificada em exemplares juvenis), as
demais foram agrupadas no gênero Callinectes.

Assim sendo, identificou-se 14 espécies (6538 exemplares), pertencentes a cinco famílias de decápodos braquiúros no período estudado (Tab. 2). Observou-se, pela Tabela 2 e Figura 2, que ocorreu um pico máximo da captura em número, nos meses de verão (janeiro e fevereiro) nas amostras da Baía; nos ambientes Praia e Estuário, a variação no número de organismos é menos conspícua, observando-se no Estuário uma maior ocorrência na primavera (outubro e novembro) (Tab. 2 e Fig. 2).

Os arrastos na Baía capturaram todas as espécies, com predominância de Callinectes danae (69,4%), Callinectes sapidus (11,3%) e Portunus spinimanus (8,8%), contribuindo com 89,5% em número do total capturado nos arrastos na Baía; P. spinimanus e Callinectes ornatus ocorreram quase que exclusivamente nesse ambiente, não sendo capturados no Estuário (Tab. 2).

Os arrastos de Praia capturaram oito espécies, com predominância de juvenis de Callinectes (35,7%), os quais foram praticamente exclusivos nesse ambiente), C. danae (31,2%) e C. sapidus (16,4%), correspondendo a 83,3% do total de capturas na Praia; Arenaeus cribriarius (n=280) foi capturado quase que exclusivamente nos arrastos de Praia, não ocorrendo no Estuário (Tab. 2).

As amostras no Estuário capturaram somente cinco espécies, todas do gênero Callinectes; C. danae foi a mais abundante (86,3%), seguida por C. sapidus (10,3%), perfazendo um total de 96,6% das capturas com armadilhas (Tab. 2).

Quanto à proporção entre machos e fêmeas, percebe-se que, de modo geral, ocorreu uma maior porcentagem de fêmeas para as espécies dominantes, diferença esta ainda maior em relação ao tipo de ambiente, com maior porcentagem nas amostras na Baía; para C. danae, 78,1% do total capturado em número é composto por fêmeas nos arrastos de fundo, valor esse que decresce em direção ao interior do complexo, onde essa porcentagem não excede 6%; C. sapidus, nas amostras da Baía e Praia, compôs-se exclusivamente de fêmeas, as quais também são dominantes no ambiente estuarino (Tab. 2).

Discussão

Os parâmetros hidrográficos mostram uma variação, relacionada ao padrão sazonal, além de aparentemente correlacionada com o regime de chuvas na região; menores temperaturas e maiores salinidades são registradas nos meses de inverno, quando ocorrem baixos valores da temperatura atmosférica e precipitação, associados com altos valores da pressão atmosférica; nos meses de primavera-verão, ocorrem as maiores temperaturas e menores salinidades com grandes flutuações, quando são registrados os maiores valores da temperatura atmosférica e precipitação, associados com baixos valores da pressão atmosférica (Paiva Filho, 1982; Paiva Filho & Toscano, 1987).

O aumento da captura total nos meses de primavera-verão obtido neste trabalho (Fig. 2) pode estar relacionado com o período de águas de maior temperatura. Segundo Taissoun (1973a), a distribuição dos siris da família Portunidae está relacionada com fatores fi-
Tabela 2. Relação das espécies e famílias capturadas no Complexo Baía-Estuaríodo Santos e São Vicente, com as Capturas por Unidade de Esforço (CPUE) e Porcentagens de Fêmeas (2F) em número para cada espécie, por mês, por ambiente e total. BA = Amostras de Fundo na Baía de Santos; PR = Amostras de Praias de Santos e São Vicente; ES = Amostras de Armadilhas nos estuários de Santos e São Vicente; * = Sem coleta.

<table>
<thead>
<tr>
<th>Amostra</th>
<th>Abundância</th>
<th>CPUE</th>
<th>CF</th>
<th>CF</th>
<th>CF</th>
<th>CF</th>
<th>CF</th>
<th>CF</th>
<th>CF</th>
<th>CF</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td></td>
</tr>
<tr>
<td>ES</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

...sicos, químicos e climáticos, sendo a temperatura e a salinidade consideradas como os mais importantes; Schemy (1980) encontrou maior abundância de Callinectes (2) na Baía de Chesapeake, flutuações não amostradas na abundância são características da população de siris-azuis, aparentemente como resultado do ambiente, induzindo variações no recrutamento.

Não foi possível a comparação dos dados de frequência de ocorrência com os de Pita et al. (1985a, b) pois os resultados apresentados por esses autores são decorrentes do agrupamento de dados obtidos com artes de pesca diferentes.

O número de espécies por nós encontrado (9) é o mesmo...
Fig. 3. Temperatura média da água de superfície (TS), expressa em graus Celsius, por ambiente, durante o período estudado.

Fig. 4. Salinidade média da água de superfície (SS), expressa em partes por mil, por ambiente, durante o período estudado.

que Pita et al. (1985a), encontraram, trabalhando na região. Segundo Taissoun (1973a), na região estudada, a qual pertence à área de transição da Província Zoogeográfica Caribenha ou Antilhana com a Argentina ou Patogônica, devem ser encontradas pelo menos seis espécies de portunídeos, podendo esse número ser ampliado para 12. Quase 88% das espécies existentes na costa atlântica das Américas, distribuem-se na Província Caribenha.

As espécies não identificadas de juvenis de Callinectes, provavelmente refletem a composição percentual das espécies dos adultos encontrados na amostra (Melo, com. pessoal*).

A espécie Callinectes danae ocorreu em maior abundância tanto na Baía, quanto nas regiões de Praia e Estuário. Sawaya & Pereira (1946) já informavam que o decápodo mais frequente em todo o litoral mais frequente em todo o litoral é quase que esse espécie, Pita et al. (1985a, b) também encontraram essa espécie como a mais abundante.

O mesmo não ocorre em águas temperadas americanas, onde Callinectes sapidus é uma importante espécie comercial capturada ao longo da costa atlântica da América do Norte, incluindo o Golfo do México (Millikin & Williams, 1984).

Em um estudo efetuado no sul do país (Rio Grande do Sul), Capitoli et al. (1978), ao definirem as comunidades bentônicas do supra ao infralitoral na região mixohalina da Lagoa dos Patos, encontraram a espécie C. sapidus, demonstrando que essa espécie domina em regiões de águas mais frias, possivelmente devido à grande tolerância da larva zoea para baixas temperaturas ou sua capacidade para o estabelecimento no plâncton (Norse, 1977).

A família Portunidae é conhecida por possuir representantes que migram para a reprodução (Hines et al., 1987). Nessa família, encontram-se os chamados siris, bons nadadores, sendo, por isso, capazes de efetuarem grandes migrações. Possivelmente, o fato de ter-se encontrado somente representantes dessa família no ambiente estuarino, se deva a essa característica; esses animais copulam no final do verão e fêmeas inseminadas chegam a migrar 200 km ou mais no outono para altas salinidades na boca de baías, para incubar seus ovos (Hines et al., 1987).

No gênero Callinectes, o maior número de fêmeas na Baía é o menor no Estuário, de uma maneira geral, podem

ser reflexo desse ciclo migratório, embora Schemy (1980) concluísse que a reprodução de C. danae ocorre durante todo o ano.

Pita et al. (1985b) também encontraram uma variação sazonal, concluindo principalmente que o estuário caracteriza-se como ambiente preferencial para fêmeas imaturas e a baía para fêmeas maduras, não encontrando padrões comportamentais nítidos para os machos.

Resumo

De junho de 1985 a maio de 1986, foi realizado um programa de pesquisa no complexo baía-estuário de Santos e São Vicente, SP. Para a obtenção do material foram utilizadas redes de arrasto de fundo, e de praia, além de armadilhas. As operações de pesca capturaram 14 espécies de Decápodos brachiúros, por meio de arrastos de fundo; oito com os arrastos de praia; e cinco, no estuário, utilizando armadilhas iscadas, sendo, estas últimas, todas pertencentes ao gênero Callinectes. Callinectes danae dominou nos três ambientes, seguido por C. sapidus e Portunus spinimanus que também foram abundantes. O número de fêmeas foi superior ao de machos para as espécies dominantes e, em geral, esse número foi maior nas amostras da Baía do que nas de Praia e Estuário. O aumento da captura total nos meses de primavera-verão pode estar relacionado com temperaturas mais elevadas da água e com padrões reprodutivos apresentados pelas espécies. São apresentadas listas de ocorrência e abundância das espécies capturadas e de parâmetros hidrográficos e operações de pesca.

Agradecimentos

Aos estagiários Ana P. Toscano, Roberto R. Gallucci e Ana C. E. Campos, pelo auxílio nos trabalhos de laboratório.

Ao colega Francisco B. Ribeiro

Neto pelo auxílio nos trabalhos de campo e sugestões para a elaboração do manuscrito.

Pelo auxílio na identificação de algumas espécies ao Dr. Gustavo A. S. Melo, do Museu de Zoologia da Universidade de São Paulo.

Referências bibliográficas

(Recebido em 25-05-88; aceito em 22-12-88)