Macromolecular confinement of therapeutic protein in polymeric particles for controlled release: insulin as a case study

Authors

  • Luiz Henrique Guerreiro Rural Federal University of Rio de Janeiro; Institute of Biological and Health Sciences; Department of Pharmaceutical Sciences
  • Daniel da Silva Federal University of Rio de Janeiro; Laboratory for Enzymology and Metabolism Control
  • Wendell Girard-Dias Federal University of Rio de Janeiro; IBCCF; Laboratory for Cell Supramolecular Structure Prof. Hertha Meyer
  • Camile Moreira Mascarenhas Federal University of Rio de Janeiro; CCS; Laboratory for Pharmaceutical Biotechnology
  • Kildare Miranda Federal University of Rio de Janeiro; IBCCF; Laboratory for Cell Supramolecular Structure Prof. Hertha Meyer
  • Mauro Sola-Penna Federal University of Rio de Janeiro; Laboratory for Enzymology and Metabolism Control
  • Eduardo Ricci Júnior Federal University of Rio de Janeiro; Laboratory for Galenic Pharmaceutical Technology
  • Luís Mauricio Trambaioli da Rocha e Lima Federal University of Rio de Janeiro; CCS; Laboratory for Pharmaceutical Biotechnology

DOI:

https://doi.org/10.1590/s2175-97902017000216039

Keywords:

Human insulin/study, Microparticles, Poly-ε-caprolactone, Therapeutic proteins/study/action, Proteins/molecular entrapping

Abstract

Sustained release systems for therapeutic proteins have been widely studied targeting to improve the action of these drugs. Molecular entrapping of proteins is particularly challenging due to their conformational instability. We have developed a micro-structured poly-epsilon-caprolactone (PCL) particle system loaded with human insulin using a simple double-emulsion w/o/w method followed by solvent evaporation method. This formulation is comprised by spheric-shaped microparticles with average size of 10 micrometers. In vitro release showed a biphasic behavior such as a rapid release with about 50% of drug delivered within 2 hours and a sustained phase for up to 48 h. The subcutaneous administration of microencapsulated insulin showed a biphasic effect on glycemia in streptozotocin-induced diabetic mice, compatible with short and intermediate-acting behaviors, with first transition peak at about 2 h and the second phase exerting effect for up to 48h after s.c. administration. This study reveals that a simplified double-emulsion system results in biocompatible human-insulin-loaded PCL microparticles that might be used for further development of optimized sustained release formulations of insulin to be used in the restoration of hormonal levels.

Downloads

Download data is not yet available.

Downloads

Published

2017-01-01

Issue

Section

Articles

How to Cite

Macromolecular confinement of therapeutic protein in polymeric particles for controlled release: insulin as a case study. (2017). Brazilian Journal of Pharmaceutical Sciences, 53(2), e16039-. https://doi.org/10.1590/s2175-97902017000216039