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ABSTRACT
In freshwater fish with external fertilization, sperm sampling can be contaminated with urine, which triggers motility 
and gives rise to decreased fertilization success. The maintenance of freshwater fish in hyperosmotic conditions may 
reduce urine production and improve sperm quality. Thus, the aim of this work was to verify if acute exposure to various 
NaCl concentrations improves sperm quality in the yellowtail tetra Astyanax altiparanae. Spermiation was induced using 
a single dose of carp pituitary gland (5 mg kg-1) and the males were maintained at various NaCl concentrations: NaCl 
0.00% (control), NaCl 0.45% (hypoosmotic), NaCl 0.9% (isosmotic) and NaCl 1.0% (hyperosmotic) for 6 h at 26 °C. 
Sperm was collected and verified for activation by urine and motility traits. At 0.00%, 0.45%, and 0.90%, the sperm 
was motile just after sampling, indicating activation by urine. Surprisingly, at hyperosmotic conditions, no activation 
was observed. Other sperm and motility parameters did not show any statistical differences, including sperm viability 
(P = 0.7083), concentration (P = 0.9030), total motility (P = 0.6149), VCL (curvilinear velocity; P = 0.1216), VAP (average 
path velocity; P = 0.1231) and VSL (straight-line velocity; P = 0.1340). Our results indicate that acute maintenance at 
hyperosmotic conditions eliminates sperm activation by urine and maintains sperm quality. Such a new procedure is 
interesting for both basic and applied sciences, including reproductive practice in fish.
Keywords: Fish. Urospermia. Sperm contamination. Salinity.

RESUMO
Em peixes de água doce com fertilização externa, a amostragem de espermatozoides pode ser contaminada pela urina, 
o que desencadeia motilidade e gera menor sucesso na fertilização. A manutenção de peixes de água doce em condições 
hiperosmóticas pode reduzir a produção de urina e melhorar a qualidade do esperma. Assim, o presente trabalho foi 
delineado para verificar se a exposição aguda a várias concentrações de NaCl melhora a qualidade do esperma no 
tetra-amarelo Astyanax altiparanae. A espermiação foi induzida usando uma dose única de hipófise da carpa (5 mg kg-1) 
e os machos foram mantidos em várias concentrações de NaCl: NaCl 0,00% (controle), NaCl 0,45% (hipoosmótico), 
NaCl 0,9% (isosmótico) e NaCl 1,0% (hiperosmótico) por seis horas a 26 °C. O esperma foi colhido e verificado quanto 
à ativação por urina e traços de motilidade. Em 0,00%, 0,45%, 0,90% os espermatozóides eram móveis logo após a 
amostragem, indicando ativação pela urina. Surpreendentemente, em condições hiperosmóticas, nenhuma ativação foi 
observada. Outros parâmetros espermáticos e de motilidade não mostraram diferenças estatísticas, incluindo viabilidade 
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Introduction
Sperm sampling is a critical stage for in vitro fertilization 

in many animal species. In this regard, sperm contamination 
with urine (urospermia) is a common phenomenon in 
reproduction practice in species including stallion (Lowe, 
2001), bears (Gomes-Alves  et  al., 2014) and humans 
(Makler et al., 1981), and is well known to decrease sperm 
quality (Ellerbrock et al., 2018). In fish, urospermia is also 
commonly described and such contamination reduces 
ATP levels and sperm parameters, such as sperm velocity, 
which can reduce the fertilization capacity. In Nile tilapia 
(Oreochromis niloticus) grown in freshwater environments, 
high urine production is observed, which has low osmolarity 
and activates sperm motility due to its low osmotic 
concentration (Poupard et al., 1998).

To prevent urine contamination, some practical procedures 
are commonly used in sperm sampling such as fractioned 
sampling, and its collection after the fish urinates and 
defecates (Beirão et al., 2019). Urine elimination can also 
be performed with a slight compression in the peritoneal 
region, although in many species, semen elimination 

usually comes with urine, as both are eliminated by a single 
urogenital pore (Król et al., 2018; Nynca et al., 2012).

The use of specific solutions to treat of urospermic 
samples is also a strategy to recover sperm quality and 
increase subsequent successful fertilization. Most protocols 
focused on the addition of extenders (Galarza et al., 2019), 
water solutions containing salts and sugars that maintain, 
temporarily, sperm viability and fertilization capacity, avoiding 
sperm activation. Other protocols focused on separation 
using a density gradient for semen fractioning, as used 
in humans (Ericsson et al., 1973), stallions (Varner et al., 
1987), bovines (Arias  et  al., 2017), and dogs (Barros 
Mothé et al., 2018).

In freshwater fish with external fertilization, sperm 
contamination with urine is more critical due to its 
mechanism of triggering sperm motility (Król et al., 2018). 
Fish spermatozoa are immobile in the seminal fluid within 
the testicular lumen, but motility is initiated after release 
to the external surrounding media (Cosson, 2019; Gallego 
& Asturiano, 2019), and it lasts for only a few seconds in 
most fish species. In teleost fish, urine also initiates motility, 
which leads to decreased sperm quality for subsequent poor 
fertilization success (Dzyuba et al., 2019). Several strategies 
were developed to improve sperm quality. A more critical 
procedure involves euthanasia and subsequent testicular 
mincing in saline solution, as performed in species that 
present urine contamination, such as small fish species 
(Kopeika et  al., 2003) and catfish (Linhart  et  al., 2020). 
Catheterization of the testicular lumen is also a strategy 
used to obtain sperm without contamination (Sarosiek et al., 
2016), but such a procedure is not viable in some species 
due to fish size or morphology of the urogenital papilla. 
Immobilizing solutions are also used in fish, because the 
addition of a saline solution may re-immobilize the activated 
sperm (Yasui  et  al., 2015), although decreased motility 
parameters and fertilization may occur in such procedure.

A possible technique to prevent urine production and 
contamination is to manipulate environmental salinity, as 
the mechanism of osmoregulation and urine production 
in freshwater species depends on the environmental 
salinity (McCormick, 2001; Sardella & Brauner, 2008). 
In hypoosmotic conditions, fish constantly absorb water 
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espermática (P = 0,7083), concentração (P = 0,9030), motilidade total (P = 0,6149), VCL (Velocidade Curvilinear; 
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from the environment and have to eliminate most parts 
from the skin and within urine. On the other hand, in 
hyperosmotic conditions, the absorption of water and urine 
production is decreased (Baldisserotto et al., 2019). This 
suggests that the maintenance of a freshwater species under 
hyperosmotic conditions may reduce urine production and 
sperm may be released without contamination.

The fish Astyanax altiparanae has been used as a model 
organism for several studies, such as early biology (Santos et al., 
2016), toxicology (Fernandes et al., 2019), flow cytometry 
(Xavier et al., 2017), and chromosome set manipulation 
(Nascimento  et  al., 2020, 2017). This species can breed 
throughout the year and sexual maturity is reached at four 
months (Porto-Foresti et al., 2005). Consequently, due to its 
small size, ease of rearing and reproduction, A. altiparanae 
has been used in both basic and applied studies.

Therefore, the aim of the present study was to verify if 
acute exposure to hyperosmotic conditions may prevent 
urine contamination in freshwater fish. The yellowtail tetra 
Astyanax altiparanae, a small fish with external fertilization, 
was used as a model since, in this species, sperm is commonly 
contaminated with urine. 

Material and Methods

Experimental conditions

Adult males of the yellowtail tetra Astyanax altiparanae 
(62.42 ± 1.76 mm; 5.52 ± 0.50 g; n = 16) used in this experiment 
were previously maintained in 1000 m2 earthen ponds at 
the National Center for Research and Conservation of 
Continental Aquatic Biodiversity/Chico Mendes Institute for 
Biodiversity Conservation (CEPTA/ICMBio) in Pirassununga, 
Brazil (21°55’58”S, 47°22’31”W). The animals were fed 
twice a day with commercial diets (4200 kcal kg−1 and 45% 
crude protein).

Males were selected (n=30) by the presence of bony 
hooks in the anal fin and maintained in 80-L aquariums 
with constant aeration and water temperature set at 28 °C 
for the experimental procedures. Ten fish were separated 
for the evaluation of serum osmolarity and 20 for induced 
reproduction and evaluation of different NaCl concentrations 
(5 for each treatment).

Evaluation of serum osmolarity

Blood samples were obtained from the caudal vein 
of 10 adult fish (> 40 mm), using a heparinized syringe 
(3 mL), with a 27-gauge needle. The blood samples were 
mixed in a 2mL microtube and centrifuged for 20 min 
at 300 G and a temperature of 15 °C. The supernatant was 

taken using a cut tip, transferred to 2mL cryotubes, and 
then maintained in liquid nitrogen (-196 °C) for osmolarity 
analysis.

The serum (1 mL) was thawed in a water bath at 20 °C 
for 2 min and the osmolarity was measured using a freezing 
point osmometer (PZL-1000, Londrina, Brazil), which 
resulted in osmolality of 272 mOsm.

In order to obtain equivalent NaCl concentrations for the 
serum osmolarity, firstly NaCl solutions at 0.2%, 0.4%, 0.6% 
and 0.8% were prepared and the osmolarity was measured, 
thus creating a linear regression (y = 30750x-4,4; R2 = 0.9973, 
in which y = osmolality and x = NaCl concentration). 
This equation was used to obtain the equivalent NaCl 
concentration for serum (0.8989% NaCl), which was then 
used as the isosmotic concentration during the experiments.

Induced spermiation

Fish were anesthetized with 200 mg L-1 of clove oil 
(Biodinamica, Ibiporã, Brazil) and induced to spermiation 
(intraperitoneally) with a single dose of carp pituitary gland 
(5 mg kg-1). Induced males were then maintained in 30-L 
aquariums with constant aeration at 26 °C, at various NaCl 
concentrations (4 males each): NaCl 0.00% (control), 
NaCl 0.45% (hypoosmotic), NaCl 0.90% (isosmotic), and 
NaCl 1.00% (hyperosmotic), which were adjusted using a 
digital refractometer (PAL-03S, Atago, Shiba, Japan). Prior 
to exposure to NaCl-treatments, the fish were individually 
maintained in beakers with 1L of freshwater, and the water 
from each NaCl treatment was slowly added into the beakers. 
After 10 min of adaptation, the fish were transferred to 
the aquariums.

After 6 h, the males were anesthetized, the papilla 
was gently dried using paper, and a small aliquot (~1 µL) 
of sperm was sampled from the papilla using a 200µL 
pipette (Eppendorf, Hamburg, Germany) and immediately 
observed at the microscope at 400x magnification (Nikon 
Ni, Tokyo, Japan) to evaluate activation by urine. Activation 
by urine was evaluated by a subjective score in which the 
criteria was based on high urine contamination (+++), 
with most spermatozoa presenting motility, with increased 
velocity; urine contamination (++), with most spermatozoa 
presenting motility, but with decreased velocity; low urine 
contamination (+) with few spermatozoa presenting motility, 
with reduced velocity and non-contaminated spermatozoa 
(-), with all immobile spermatozoa. This score was used 
because extremely high concentration did not permit us 
to visualize the sperm cells individually or by automated 
analysis (CASA).
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The remaining sperm was collected by stripping using 
a 1000-µm pipette (Eppendorf, Hamburg, Germany) 
and immediately transferred to a 1.5mL microtubes 
containing 400 µL of immobilizing Ringers solution 
(NaCl 128.3 mM, KCl 23.6 mM, CaCl2 3.6 mM, MgCl2 2.1 mM) 
and maintained on ice (~4 °C). Sperm concentration was 
evaluated by hemocytometer, as in our previous works 
(Yasui et al., 2012a, 2015).

Sperm quality analysis

Sperm motility was measured using computer assisted 
sperm analysis (CASA) according to the procedures described 
for Danio rerio (Wilson-Leedy & Ingermann, 2007) and to 
the studying species A. altiparanae (Gonçalves et al., 2018). 
A small aliquot of sperm (0.5 µL) was pipetted on a Makler 
chamber (Selfi-Medical Instruments, Haifa, Israel) in which 
both the chamber and the cover slide were previously coated 
with a solution of bovine serum albumin at 0.1% in order 
to prevent sperm attachment to the surfaces. The sperm 
was activated with 20-fold dilution with distilled water, the 
cover slide was placed and the motility was visualized on 
a trinocular microscope (Nikon Ni, Tokyo, Japan) at 200x 
magnification. Sperm motility was captured using a CCD 
camera (Nikon DS-Fi, Tokyo, Japan) connected to the 
microscope and video sequences were recorded at 15 s 
post activation using the Nis-Ar Elements software (Nikon, 
Tokyo, Japan). The duration of sperm motility was measured 
from the video sequences of the sperm activation until the 
sperm motility became lower than 5% of total motility (see 
criteria proposed by Yasui et al., 2012b).

The videos were edited through VirtualDub 
software 1.10.4 generating a sequence of images that were exported 
to ImageJ® software with the CASA plugin. The parameters 
of motility were patronized according to Wilson-Leedy & 
Ingermann (2007). The motility characteristics measured 
were percent motility (%); curvilinear velocity (VCL); average 
path velocity (VAP) and straight-line velocity (VSL). Sperm 
viability was measured by dual staining with SYBR-14 and 

propidium iodide (PI), using the sperm viability kit (Molecular 
Probes, Eugene, OR, USA). Stained samples were analyzed 
by flow cytometer (Accuri C6, BD Biosciences, San Jose, 
CA, USA) with FL1 (530 ± 15 nm) and FL3 (> 670 nm) 
filters, respectively. Membrane integrity was evaluated by 
the percentage of semen stained by SYBR-14 and PI.

Statistics

All data are presented as mean ± standard error. The data 
were tested for normality using Lilliefors, followed by 
ANOVA and Tukey’s multiple range test. In all cases, the 
probability was set at 0.05. All the statistical analysis was 
performed using the software Statistica 10.0 for Windows.

Results
As shown in Table  1, biometric data regarding total 

weight (P = 0.4947) and standard-length (P = 0.1325) did 
not show any statistical differences.

Urine sperm contamination was reduced with increasing 
NaCl concentrations, as expressed by subjective motility. 
In freshwater (NaCl 0.0%), all the samples were highly 
activated with urine (+++). NaCl 0.45% decreased the 
motility activation (++) and a following decrease was 
also observed at isosmotic conditions (+), in which few 
spermatozoa were activated just after sampling. Interestingly, 
the hyperosmotic treatment (NaCl 1.0%) resulted in no motile 
spermatozoa after sperm sampling. Sperm viability was not 
affected by any NaCl concentration tested (P = 0.7083), and 
ranged from 92.53 ± 1.97% (NaCl 0%) to 89.50 ± 1.75% 
(NaCl 0.9%) (Figure 1). Sperm concentration showed no 
statistical differences between different NaCl concentrations 
(P > 0.05), with the highest concentration at NaCl 0.45% 
(14.70 ± 3.88 x 107 spermatozoa mL-1) and the lowest value 
at NaCl 0.9% (10.45 ± 3.11 x 107 spermatozoa mL-1).

Motility path and motility parameters are shown in 
Table  2. All the parameters were not affected by NaCl 
concentrations, including total motility (P = 0.6149), VCL 
(P = 0.1216), VAP (P = 0.1231) and VSL (P = 0.1340).

Table 1 – Biometric data and sperm parameters of Astyanax altiparanae males maintained for 6 h at various NaCl concentrations 
after induced spermiation. Data are shown as mean ± standard error. None of the parameters presented any statistical 
differences
Treatments Male parameters Sperm parameters

Condition % NaCl Total weight (g) Standard length 
(mm)

Urine 
Contamination Viability (%) Concentration 

(spermatozoa mL-1)
Hyposmotic (n=5) 0.00% 5.45 ± 1.09 60.86 ± 2.53 +++ 92.53 ± 1.97 10.90 ± 3.46 x 107

Hyposmotic (n=5) 0.45% 4.25 ± 0.38 56.54 ± 1.87 ++ 91.93 ± 1.40 14.70 ± 3.88 x 107

Isosmotic (n=5) 0.90% 5.95 ± 1.31 64.89 ± 4.31 + 89.50 ± 1.75 10.45 ± 3.11 x 107

Hyperosmotic (n=5) 1.00% 6.45 ± 1.07 67.40 ± 3.38 - 90.28 ± 2.81 12.75 ± 6.60 x 107

(+++) high urine contamination, with most spermatozoa presenting motility and increased velocity; (++) urine contamination, with most spermatozoa presenting 
motility but with decreased velocity; (+) low urine contamination, with few spermatozoa presenting motility with reduced velocity; (-) non-urine contaminated 
spermatozoa, with all immotile spermatozoa.
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Discussion
In this work, induced males maintained in hyperosmotic 

conditions for only 6 h eliminated the sperm activation by 
urine after sampling, indicating that urine production was 
reduced. In fact, the maintenance of freshwater fish in a 
hyperosmotic environment may reduce urine production 
and also mobilize the water content from the bladder to 

maintain the osmotic physiological balance (Evans, 2008). 
This indicates that sperm activation may be reduced by 
two mechanisms: 1) reduction of urine production and; 2) 
concentrating the urine solutes. Theoretically, the mobilization 
of water from urine should increase the sperm concentration, 
but such increase was not detected by our data. However, 
possible urine contamination may not be discarded from 

Table 2 – Motility parameters of Astyanax altiparanae males maintained for 6 h at various NaCl concentrations after induced 
spermiation. Data are shown as mean ± standard error. None of the parameters presented any statistical differences 
Treatments Motility parameters

Condition NaCl Motility (%) VCL (µm/s) VAP (µm/s) VSL (µm/s)
Hyposmotic 0.00% 62.23 ± 16.27 56.21 ± 7.33 54.21 ± 7.08 45.21 ± 6.23
Hyposmotic 0.45% 54.60 ± 14.82 64.97 ± 10.85 61.97 ± 9.53 48.96 ± 4.67
Isosmotic 0.90% 70.71 ± 15.16 69.18 ± 9.21 63.18 ± 8.69 43.18 ± 6.89

Hyperosmotic 1.00% 43.73 ± 14.71 39.47 ± 1.07 38.47 ± 6.08 43.09 ± 4.27

Figure 1 – Flow cytometric histograms showing the sperm viability after dual staining with SYBR-14 and Propidium Iodide and 
subsequently analyzed by flow cytometry. The detached area indicates the percentages of live and dead cells. (A) Control (0.0% 
NaCl); (B) Hyposmotic solution (0.45% NaCl); (C) Isosmotic solution (0.9% NaCl); (D) Hyperosmotic. VCL: curvilinear velocity; 
VAP: average path velocity; VSL: straight-line velocity.
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sperm sampling, but it did not trigger the sperm motility. 
This procedure may be applicable in reproduction practice 
including fish hatcheries and laboratory work. In freshwater 
fish with external fertilization, urine activation may trigger 
motility and then reduce the duration of sperm motility 
during fertilization trials. The general procedure for in 
vitro fertilization in fish employs the “dry method”, in 
which the immotile sperm is first mixed with the oocytes 
and, subsequently, the gametes are activated by addition 
of water. In this procedure, the use of non-contaminated 
sperm is important to improve motility parameters and 
subsequent fertilization success. Motility parameters are 
well known as the main fertilization predictor for most 
fish species (Rurangwa et al., 2004).

In previous works, the maintenance of freshwater fish 
in various saline concentrations was described alongside 
the spermatic quality. In the brown trout Salmo trutta f. 
fario, the sperm quality was higher in males maintained in 
freshwater when compared with increased salinity (Labbe 
& Maisse, 2001).

In this work, the manipulation of environmental salinity 
was possible using the yellow-tail tetra as a model. This 
species may adapt to increased salinity, such as in the case 
of this study, in which the salinity was adjusted to 1.0%. 
Although acute exposure was used in this study, it is 
important to adapt the fish into the new salinity. The fish 
were adapted from freshwater into the NaCl treatments 
within only 10 min, in which water containing NaCl was 
gently added to the fish. However, for application of NaCl 
treatments in other fish species, an adjustment of salinity 
and management adaptation may be necessary, since salinity 
tolerance and physiological balance are species-specific.

According to Gonzalez (2012), in hyper-saline water, fish 
may present some adjustments to perform osmoregulation 
in such conditions, such as 1) reduced branchial water 

permeability, which limits osmotic water loss and reduces the 
salt load; 2) increased gut Na+/K+ -ATPase (NAK) activity 
to absorb the salt load, and 3) increased branchial activity 
to excrete the Na+ and Cl-, which occur against a larger 
gradient. Therefore, besides the fact that A. altiparanae was 
submitted to an acute exposure, such physiological events 
are probably responsible for the tolerance of the species.

Comparing with other methods to avoid urine contamination, 
such as fractioned sampling (Beirão et al., 2019), the use 
of extenders and catheterization (Sarosiek et al., 2016), the 
use of hyperosmotic conditions has the advantage of being 
simple, inexpensive and low time-consuming, which can 
facilitate the routine of fish reproduction in laboratory 
conditions.

In conclusion, the sperm quality was not affected by acute 
NaCl treatments as expressed by all motility parameters, 
sperm viability, and concentration. Such procedure is 
inexpensive and applicable to in vitro fertilization in fish 
in both basic and applied sciences.
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