Embryotoxic effects of prenatal treatment with *Ipomoea carnea* aqueous fraction in rats

Rosana Zoriki HOSOMI 1  
Helenice de Souza SPINOSA 1  
Silvana Lima GÓRNIAK 1  
Soraya Ferreira HABR 1  
Sandra Witaker PENTEADO 2  
Franci Mary Fantinato VAROLI 3  
María Martha BERNARDI 2,3  

Correspondence to: bernarde@usp.br
Av. Prof. Dr. Orlando Marques de Paiva, 87  
Cidade Universitária - São Paulo/SP, 05508-000

Received for publication: 30/07/2007  
Aproved for publication: 22/11/2007

Abstract

The embryotoxic effects of prenatal daily exposure to 0.0, 0.7, 3.0 or 15.0 mg/kg of the aqueous extract (AQE) from *Ipomoea carnea* (*I. carnea*) dried leaves on gestational days 5–21 were studied in rats. Maternal reproductive performance, skeletal and visceral abnormalities, and malformations were evaluated. Moreover, anatomopathological findings in dams following the treatment were recorded. Regarding the dams, our results show that body weight, weight gain, food and water consumption, and reproductive performance were all unaffected by exposure to the different doses of the AQE. Nonetheless, dams treated with AQE presented a dose-dependent cytoplasmic vacuolation in the liver, kidneys, thyroid and adrenal glands. Fetal examination did not show external abnormalities or malformations. Evidences of several skeletal and visceral abnormalities were found, particularly after the higher dose of AQE. A reduced ossification centers were also detected. The present data show that prenatal ingestion of the *I. carnea* AQE in rats induces embryotoxicity. These effects are attributed to an active principle from *I. carnea* acting on maternal homeostasis, or directly in the conception.

Key words: 
Ipomoea.  
Teratogens.  
Prenatal care.

Introduction

*I. carnea* is a toxic plant widely distributed in Brazil 1 and other tropical countries 2. Two kinds of toxic principles were isolated from the plant, the nortropane alkaloids calystegines B1, B2, B3 and C1 and mainly the indolizidine alkaloid swainsonine. 3,4 The latter alkaloid has a known toxic mechanism of action, being a potent inhibitor of two distinct intracellular enzymes, the acidic or lysosomal α-mannosidase and the Golgi mannosidase II. However, with respect to calystegines B and C1, these nortropane alkaloids are only recognized as inhibitors of α-galactosidase and β-glucosidase enzymes, respectively. 5,6 Recent studies conducted in our lab, comparing the histological effects of each calystegine, in the same concentration contained in *I. carnea* aqueous fraction (AQE) administered to rats, did not show the characteristic vacuolar lesions observed in animals treated solely with swainsonine. 6 Thus, whether all these alkaloids together enhance the effects produced by swainsonine intoxication on *I. carnea* is unknown. 7

*I. carnea* promotes in livestock a toxicosis histologically characterized by vacuolated cells in different organs. The toxic principles of *I. carnea* are the alkaloids swainsonine and calystegines B1, B2, B3 and C1. However, it has not been determined whether the effects observed in rats treated with this plant are only due to swainsonine or if the calystegines have some additive toxic effect. The histopathologic study showed that while calystegines did not promote vacuolation in different organs, being more severe in the animals from the *I. carnea* AQE group and extensible to other organs evaluated, suggesting that calystegines may act as coadjuvants of
Swainsonine in *I. carnea* toxicosis. It has long been reported that long-term ingestion of *I. carnea* (a tropical plant of the convolvulaceae family) leads to neurobehavioral effects in goats, cattle and sheep. However, there are only a few reports about its effects on the offspring if grazed by pregnant animals. Schwarz et al. described several changes on developmental parameters induced by AQE prenatal exposure to this extract. No changes in behavior or neurochemical parameters in adulthood were observed, suggesting that, in rats, these toxic effects are reversible.

The main objective of this investigation was to study possible embryotoxic effects of *I. carnea* AQE on rats exposed during the organogenesis period. We examined the visceral and skeletal development of the offspring from *I. carnea* treated dams. Furthermore, we investigated possible anatomopathological changes induced in dams during this treatment.

**Material And Method**

**Plant**

*I. carnea* leaves were collected in May, 2004 from plants cultivated at the Research Center for Veterinary Toxicology (CEPTOX), University of São Paulo (USP), Pirassununga, Brazil.

**Preparation of the aqueous fraction extract (AQE)**

Fresh leaves were first triturated with ethyl alcohol (97º Gay Lussac) in a blender, macerated for 72 hours in ethyl alcohol (97º Gay Lussac), and filtered using a Büchner funnel. The filtrate was then evaporated under reduced pressure, and the product obtained was reserved. The recovered ethanol was again mixed to the leaf residue for a 24-hour maceration, following by additional stages of filtration and evaporation under reduced pressure; the resulting product was again reserved. This procedure was repeated twice over, and the four products were pooled, composing the final extract, which was diluted in distilled water and filtered through paper. The filtered portion, ethanolic fraction, was treated with butanolic alcohol and separated with a decantation funnel. This procedure originated the AQE that was stored at -20º C.

**Animals**

Male and female Wistar rats from the Department of Pathology (School of Veterinary Medicine, University of São Paulo), weighing 180-200 g, and aged approximately 90 days were used. The animals used in this study were maintained in accordance with The Guide for the Care and Use of Laboratory Animal, National Research Council, USA (1996).

**Procedures**

**Treatment with I. carnea AQE, reproductive parameters and maternal data**

Sexually naive female rats (*n = 40*) were mated with males previously tested as fertile (two females and one male per cage). Pregnancy was determined by the presence of spermatozoa in vaginal smears on the following morning, designated as gestation day 1 (GD1). Pregnant rats were removed from the male cage, and kept in isolation. On GD5, the dams were divided into four groups (one control and three experimental groups). The experimental groups (*n=10* animals/group) were treated orally by gavage, once a day from GD5 to GD 21, with 0.7, 3.0 or 15.0 mg/kg of AQE. The control group received tap water by gavage. The pregnant rats were weighed on GD1, GD5, GD7, GD11, GD14, GD17 and GD21. Food and water consumption during pregnancy were also assessed. On GD21, the dams were submitted to euthanasia and their uterine horns were removed. The number of implantations, resorptions, dead and live fetuses, and corpora lutea were recorded. Additionally, liver, kidneys, thyroid and adrenal glands were removed from the dams, weighed and analyzed; tissue specimens were fixed in 10% neutral buffered formaldehyde for histolopathological
routine processing, embedded in paraffin, and 5-mm-thick sections were cut and stained with hematoxylin and eosin for light microscopy evaluation.

The fetuses were examined macroscopically for external abnormalities, and individually weighed, as were their placentas. These data were used to calculate litter weight, as well as the placental litter weight. The following parameters were analyzed: skull shape, ears and palate implantation, tail and foot conformation, anal drilling, among others. The percentage of preimplantation loss was calculated as: number of corpora lutea – number of implantations x 100/number of corpora lutea, and percentage of postimplantation loss was calculated as: number of implantation – number of live fetuses x 100/number of implantations.

Under deep anesthesia, half of each litter was fixed in Bouin’s solution for subsequent visceral examination, following serial section as described by Wilson [11], and the other half litter was stained with Alizarin red according to the technique of Staples and Schenell [12] to identify skeletal alterations. The extent of ossification was evaluated using the parameters proposed by Aliverti et al. [13]. Data are presented as the number of fetuses or litters affected, i.e., the total number of fetuses or the number of litters that present abnormalities or malformations.

**Statistical analysis**

One-way ANOVA was used to compare data from body weight, weight gain, and reproductive performance of dams. Two-way ANOVA was employed to analyze food and water consumption by the dams. Several other parameters were evaluated as frequencies of occurrence and compared by means of the qui² Square Test [14]. The GraphPad Instat software package [15] was used throughout this study. In all cases, results were considered to be significant when p < 0.05.

**Results**

Few significant differences in the weight gain of dams treated with the AQE were observed, when compared to the control group (Figure 1). Food and water consumption were not altered by these treatments on any group (data not show).

The reproductive performance of the dams treated during organogenesis was similar to that of control animals (Table 1). There was no significant difference in the number of implantation sites, number of resorptions, number of live fetuses per litter, number of corpora lutea, fetal weight and

![Figure 1](image-url) - Weight gain of pregnant rats exposed during pregnancy to 0.7, 3.0 or 15.0 mg/kg of *I. carnea* AQE. Data are presented as means ± S.E.M.
placental weight among control and experimental groups. No external abnormalities were observed.

Anatomopathological analyses of maternal liver, kidneys, thyroid and adrenal glands showed a dose-dependent presence of vacuolation (Figures 2, A,B,C and D) in all tissues.

No skeletal malformations were detected on any group treated with the AQE (Table 2). Litters prenatally exposed to 3.0 and 15.0 mg/kg/day of L. carnea AQE presented a significant increase in skeletal abnormalities when compared to the control

Table 1 - Reproductive performance of rats treated with 0.7, 3.0 or 15 mg/kg of L. carnea AQE from GD6 to GD 21. This table showed the means and the standard error or percentage.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control (n = 10)</th>
<th>0.7 mg/kg/day (n = 10)</th>
<th>3.0 mg/kg/day (n = 10)</th>
<th>15.0 mg/kg/day (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal weight (g)</td>
<td>334.30</td>
<td>332.90</td>
<td>320.60</td>
<td>336.10</td>
</tr>
<tr>
<td>± 10.22</td>
<td>± 5.88</td>
<td>± 11.30</td>
<td>± 4.89</td>
<td></td>
</tr>
<tr>
<td>Uterus weight at term (g)</td>
<td>59.22</td>
<td>58.13</td>
<td>57.72</td>
<td>62.14</td>
</tr>
<tr>
<td>± 3.51</td>
<td>± 4.29</td>
<td>± 8.05</td>
<td>± 3.99</td>
<td></td>
</tr>
<tr>
<td>Maternal weight at term minus uterus weight (g)</td>
<td>273.07</td>
<td>274.76</td>
<td>262.88</td>
<td>273.95</td>
</tr>
<tr>
<td>± 8.98</td>
<td>± 4.05</td>
<td>± 5.36</td>
<td>± 3.81</td>
<td></td>
</tr>
<tr>
<td>Fetal weight (g)</td>
<td>3.31</td>
<td>3.30</td>
<td>3.43</td>
<td>3.30</td>
</tr>
<tr>
<td>± 0.04</td>
<td>± 0.02</td>
<td>± 0.03</td>
<td>± 0.02</td>
<td></td>
</tr>
<tr>
<td>Placental weight (g)</td>
<td>0.50</td>
<td>0.48</td>
<td>0.52</td>
<td>0.49</td>
</tr>
<tr>
<td>± 0.007</td>
<td>± 0.005</td>
<td>± 0.005</td>
<td>± 0.005</td>
<td></td>
</tr>
<tr>
<td>Litter weight (g)</td>
<td>3.38</td>
<td>3.34</td>
<td>3.45</td>
<td>3.29</td>
</tr>
<tr>
<td>± 0.07</td>
<td>± 0.05</td>
<td>± 0.07</td>
<td>± 0.05</td>
<td></td>
</tr>
<tr>
<td>Number of fetuses</td>
<td>10.60</td>
<td>10.30</td>
<td>9.90</td>
<td>10.70</td>
</tr>
<tr>
<td>± 0.68</td>
<td>± 0.37</td>
<td>± 1.47</td>
<td>± 0.71</td>
<td></td>
</tr>
<tr>
<td>Number of implantations</td>
<td>11.40</td>
<td>12.20</td>
<td>11.10</td>
<td>11.90</td>
</tr>
<tr>
<td>± 0.79</td>
<td>± 0.35</td>
<td>± 1.12</td>
<td>± 0.60</td>
<td></td>
</tr>
<tr>
<td>Number of corpora lutea</td>
<td>12.80</td>
<td>12.70</td>
<td>12.00</td>
<td>13.00</td>
</tr>
<tr>
<td>± 0.62</td>
<td>± 0.36</td>
<td>± 0.88</td>
<td>± 0.53</td>
<td></td>
</tr>
<tr>
<td>% preimplantation loss</td>
<td>11.03</td>
<td>3.87</td>
<td>8.95</td>
<td>8.38</td>
</tr>
<tr>
<td>% postimplantation loss</td>
<td>6.54</td>
<td>15.84</td>
<td>16.07</td>
<td>11.36</td>
</tr>
</tbody>
</table>

There were no significant differences (One-way ANOVA).

Figure 2 - (A) Photomicrograph of the liver (A), kidney (B), thyroid (C), and adrenal gland (D) of rats treated with 15.0 mg/kg of L. carnea AQE. Note the vacuolation caused by the treatment (arrows); H and E staining, 200X magnification.
Craniofenestriae (p < 0.0001) and vertebra abnormalities (p = 0.015) were more frequently observed after 15 mg/day AQE exposure than in control animals. An enlargement of fontanel was detected in fetuses treated with 3.0 (p = 0.0135) and 15.0 mg/kg/day (p = 0.002) of AQE. No differences were observed among groups in regard to sternebrae or ribs.

Examination of live fetuses for ossification centers yielded significant results (Figure 3). A significant decrease in metacarpal (F(3/209) = 3.124, p = 0.027), caudal vertebra (F(3/209) = 11.448, p < 0.0001), and total ossification (F(3/209) = 5.067, p = 0.002) were observed, indicating differences in metacarpal ossification on 0.7 and 15 mg/kg of I. carnea extract-treated animals. A reduced degree of caudal vertebra, as well as in total ossification were detected in 15 mg/kg I. carnea extract-treated animals, compared to control, 0.7 or 3.0 mg/kg-treated groups. No differences were observed in the remaining parameters.

Several visceral abnormalities, such as kidney symmetry, dilated renal pelvis, hemorrhagic kidney, dilated cerebral ventricle, hemorrhagic cerebrum, hemorrhagic thyroid gland (petechiae), and spongy lung were observed in fetuses prenatally treated with I. carnea AQE (Table 3). Thus, comparing to the control group, a significantly increased number of visceral abnormalities (p = 0.014), dilated cerebral ventricle (p = 0.016), and kidney symmetry (0.014) were detected after 15 mg/kg/day of I. carnea AQE. Moreover, 0.7 mg/kg/day I. carnea AQE-treated fetuses presented increased frequency of dilated cerebral ventricles in relation to the control group. No differences were observed among groups in the remaining parameters of visceral examination.

### Discussion

We show here that exposure to I. carnea AQE during gestation induced maternal toxicity, represented by cytoplasmic vacuolation in several organs of the dams, suggesting that exposure of dams to I. carnea AQE, during 15 days of pregnancy, induce several signs of toxicity in the liver, kidneys, thyroid and adrenal glands. No visceral or skeletal malformations were detected; nonetheless, several visceral and skeletal abnormalities were observed, particularly after exposure to the higher dose of AQE. Our results show that administration of different doses of I. carnea AQE did not alter food and water ingestion.

However, little effects were observed in maternal performance at the end of pregnancy. In fact, there was no significant difference in number of implantation sites, number of resorptions, number of live fetuses, or litter size.
fetuses per litter, number of corpora lutea, and fetal weight or placental weight among groups. Additionally, no intrauterine effects were detected in fetal growth. Thus, this damage is also determined by the duration of exposure. In our experiments *I. carnea* AQE was administered for a short period of time, i.e., 15 days. Thus, the lack of toxic effects on the placenta and fetuses may be due to both the low ability of *Learnea* AQE active principle in crossing the placental barrier, a consequence of its hydrophilic properties, and to the short period of exposure.

**Figure 3** - Number of ossification centers (A), and total ossification centers (B) in rats exposed during pregnancy to 0.7, 3.0 or 15.0 mg/kg of *I. carnea* AQE. APF = previous phalange, MET = metacarpal ossification, EST = esternebrious, MTT = metatarsal ossification, CV = caudal vertebra. Data are presented as means ± S.E.M.

Protein, carbohydrate, or lipid metabolism dysfunction, as well as changes in kidney clearance, or in hepatic and endocrine function in dams can induce embryotoxicity *per se*, leading to developmental abnormalities, and disrupting maternal homeostasis. Present data showed a dose-dependent vacuolation in
liver, kidneys, thyroid and adrenal glands, suggesting an interference with nutrient absorption in dams exposed to *I. carnea* AQE, resulting in cellular damage in these organs.

Hueza et al. 18 showed that the body weight of pups from dams treated with the *I. carnea* AQE was diminished immediately after birth, when compared with those from young rats of untreated mothers. One hypothesis for reduced body weight of the experimental pups is due to the direct toxic effect of swainsonine in the fetuses. However, considering that it is well known that the nutritional status of mothers affects embryonic and fetal development in rats. 19,20 In the latter third period of gestation, Swainsonine has free circulation into fetal digestive and respiratory tracts.21 Taken as a whole, the data obtained in this study revealed that the toxic principle of *I. carnea* passes the placental barrier affecting fetus development and even when *I. carnea* administration is withdrawn, swainsonine is still excreted into milk.18

In our study, examination of live fetuses prenatally exposed to *I. carnea* AQE aiming at the evaluation of ossification centers indicates decreased metacarpal, caudal vertebra and total ossification, mainly after the higher dose of *I. carnea*. This parameter has been used to determine the degree of fetal development.13 Furthermore, increased skeletal and visceral abnormalities, as well as in visceral malformations, have been found in *I. carnea* AQE-exposed animals, particularly after the higher AQE dose. These data suggest that *I. carnea* AQE crosses the placental barrier, inducing direct embryotoxic effects that could be attributed to the presence of swainsonine in the plant. However, caligestines - another active principle of *I. carnea* AQE - could be partially responsible by these effects. In fact, caligestines, by an inhibitory effect on glicosydases, prevent oligosacharide and glycoprotein synthesis; therefore, both caligestines interfere with proper and adequate cell growth.22

### Acknowledgements

This research was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and MackPesquisa of Universidade Presbiteriana Mackenzie, and is part of the Master thesis presented by Rosana R. Hosomi to the Instituto de Ciência Biomédicas da Universidade de São Paulo. The authors wish to express their sincere gratitude to Dr. Mitsue Haraguchi for skillful technical assistance on the leaf extraction protocol. Special thanks are due to André Luiz dos Santos Capela e Ara e Renata Nacci for technical assistance.

<table>
<thead>
<tr>
<th>Litter size</th>
<th>Number of fetuses</th>
<th>Fetuses affected</th>
<th>Litters affected</th>
<th>Fetuses affected</th>
<th>Litters affected</th>
<th>Kidney symmetry/fetuses</th>
<th>Kidney pelvis enlarged/fetuses</th>
<th>Kidney hemorrhage/fetuses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>0.7 mg/kg</td>
<td>3.0 mg/kg</td>
<td>15.0 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Litter size</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of fetuses</td>
<td>51</td>
<td>50</td>
<td>46</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fetuses affected</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Litters affected</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fetuses affected</td>
<td>14</td>
<td>18</td>
<td>14</td>
<td>25*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Litters affected</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney symmetry/fetuses</td>
<td>14</td>
<td>17</td>
<td>13</td>
<td>25*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney pelvis enlarged/fetuses</td>
<td>13</td>
<td>16</td>
<td>14</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney hemorrhage/fetuses</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p<0.05, compared to the control group, χ² Square test
Efeitos embriotóxicos do tratamento pré-natal com extrato aquoso de *Ipomoea carnea* em ratos

**Resumo**

Os efeitos embriotóxicos da exposição diária pré-natal a 0,0, 0,7, 3,0 ou 15,0mg/kg do extrato aquoso da *I. carnea* nos dias 5 a 21 de gestação foram estudados. Foram avaliados a performance reprodutiva materna, anormalidades esqueléticas e viscerais e malformações. Além disso, após o tratamento foram encontrados achados anatopatológicos. Em relação às ratas mães, nossos resultados mostraram que a exposição às diferentes doses não afetou o peso corporal, ganho de peso, consumos de água e ração e performance reprodutiva. Apesar disso, apresentaram vacuolização citoplasmática de forma dose-dependente em fígado, rins, tireóide e glândula adrenal. Exames fetais não mostraram anormalidades externas ou malformações, sendo somente encontradas evidências de anormalidades esqueléticas e viscerais após altas doses do extrato. Foi observada redução dos centros de ossificação. Os presentes dados mostram que a ingestão prenatal do extrato de *I. carnea* induz embriototoxicidade. Estes efeitos são atribuídos à ação na homeostase materna ou diretamente na concepção.

**Palavras-chave:** *Ipomoea*. Teratogênicos. Cuidado pré-natal.

**References**


15 GRAPHPAD. *GraphPad Instat V2.01*. San Diego: GraphPad Software, 1993. 1 computer disk, 3 1/2 in, IBM.


INSTRUÇÕES AOS AUTORES

Normas editoriais
O periódico Brazilian Journal of Veterinary Research and Animal Science é publicado bimestralmente pela Fundação de Medicina Veterinária (FUMVET) e destina-se a publicar trabalhos científicos sobre medicina veterinária e ciências afins. Os trabalhos encaminhados para publicação são submetidos à aprovação do Comissão Editorial, com assessoria de especialistas da área (peer review). A lista de colaboradores (relatores) é publicada no último fascículo/ano de cada volume. Os trabalhos cujos textos necessitarem de revisões ou correções que não puderem ser feitas pelos editores serão devolvidos aos autores. Os aceitos para publicação tornam-se propriedade dessa revista. Os autores são responsáveis pelos conceitos e informações neles contidos.

No momento da submissão do trabalho à revista é obrigatório apresentar a aprovação do protocolo experimental por Comitê de Ética. Qualquer que seja o tipo de tema, os autores devem se informar e destinar-se exclusivamente a esse periódico, sendo obrigatório anexar declaração assinada por todos os autores expressando concordância no pagamento de tarifa como condicionante à sua publicação.

Os trabalhos para publicação deverão ser encaminhados a:
Brazilian Journal of Veterinary Research and Animal Science
Setor de Publicação
Av. Prof. Dr. Orlando de Marques Paiva, 87
Cidade Universitária “Armando de Salles Oliveira”
CEP 05082-270 – São Paulo – SP – Brasil
Telefone: 0055 11 3091 1472/ 3091 7636
Fax: 0055 11 3091 7636
E-mail: byvras@fumvet.com.br

Artigo completo
1) Limitar-se ao máximo de dez páginas digitadas, dentro da estrutura do item cinco, não sendo contadas as páginas onde constam tabelas e ilustrações. 2) Ser escrito em língua portuguesa ou em língua inglesa. 3) Usar somente nomenclaturas oficiais e abreviaturas consagradas, não empregando abreviaturas no título do artigo. 4) Não devem ser subdivididos em seções separadas (Introdução, Materiais e Métodos etc.), mas devem apresentar, obrigatoriamente, dois resumos, com palavras-chave, conforme descrito na apresentação de Artigo completo, além de referências. Artigos de revisão Só poderão ser publicados por especialistas de renome a convite da Comissão Editorial. Não devem ser subdivididos em seções separadas (Introdução, Materiais e Métodos etc.), mas devem apresentar, obrigatoriamente, dois resumos, com palavras-chave, conforme descrito na apresentação de Artigo completo, além de referências.

Apresentação dos trabalhos

1) Digitação: original em CD, devidamente identificado com o título do artigo e nome(s) do(s) autor(es) e três palavras-chave, inclusive suas traduções e referências; deve ser digitado, obrigatoriamente, em formato A4 (21 x 29,7 cm), espaço duplo, em uma só face de papel, margens de 2,5 cm, fonte Times New Roman tamanho 10 e nomenclatura consecutiva das páginas. Ilustrações e legendas devem ser relacionadas em folhas separadas. O texto dos artigos deve ser apresentado, obrigatoriamente, em formato de texto Word. 2) Página de rosto: elemento obrigatório, onde deve conter o título do artigo, nome(s) do(s) autor(es) e instituição de origem. Observar que unicamente nesta página conste a identificação dos autores, para o devido sigilo e imparcialidade. No rodapé da página deve-se mencionar o número de texto completo (inclusive e-mail do autor para correspondência). Se o artigo for subdivencionado, mencionar a instituição que o patrocinou, assim como os agradecimentos e fontes de financiamento. 3) Tabelas: devem ser numeradas em algarismos arábicos e encabeçadas pelo título, seguido de local e data. Na montagem das tabelas seguir: IBGE. Normas de apresentação tabular. 3. ed. Rio de Janeiro: IBGE, 1993. O limite de tabelas por trabalho é de cinco. Em casos excepcionais, conhecida a opinião da Comissão Editorial, este número poderá ser ultrapassado. No texto devem ser exclusivamente numeradas consecutivamente com algarismos arábicos e citadas como figuras no texto. As ilustrações devem ser identificadas consecutivamente com o título do artigo, além de conter no verso a indicação de seu corretor no encaminhamento. Fotos fornecidas em papel fotográfico devem ter oitima resolução, em CD com a extensão TIF e resolução mínima de 300 dpi’s. As legendas de ilustrações coloridas devem estar referenciadas somente por setas, símbolos e pontos quando publicadas em preto e branco. Gráficos, desenhos e esquemas devem ser encabeçados em CD, impressos em folha à frente, identificada com somente o título do artigo, além das respectivas legendas. Todas as ilustrações devem ser fornecidas em três vias. Os gráficos devem trazer sempre os valores numéricos que lhes deram origem. Desenhos e esquemas devem apresentar boa qualidade técnica e artística. Aceitar-se-a um número máximo de nove ilustrações por artigo, supondo-se a seguinte distribuição: três fotografias, três gráficos e três desenhos/ esquemas. Acima deste limite, as despesas com reprodução correrão por conta do autor. Ilustrações coloridas, independentemente do número, serão cobradas. No texto devem ser indicadas pela palavra Figura (por extenso). Indicar junto ao título da ilustração o local e data.

3) Referências: devem ser numeradas, ao final do artigo, de forma consecutiva de acordo com a ordem em que foram sendo citadas no texto. Os títulos de periódicos devem ser mencionados de maneira uniforme, de preferência todos por extenso. As referências seguem ao formato da Associação Brasileira de Normas Técnicas (ABNT) NBR 6023, que deve ser consultada para outros tipos de documentos aqui não exemplicados.

Exemplos de Apresentação dos Autores nas Referências:
BONACURA, J. D. (um autor)
SANTOS, J. A.; MELLO, M. R. (dois autores)
BENNETT, B. T.; ABBE, C. R. (três autores)
VILELA, D. A.; MARTINS, C. E.; BRESSAN, M.; CARVALHO, L. A. [...] (mais de quatro autores ou mais)

Exemplo de período

Exemplo de livro

Exemplo de autor diferente para o livro

Exemplo de mesmo autor para o livro em que houve colaboração

Exemplo de tese

Exemplo de evento

Exemplo de livro eletrônico

Exemplos de artigos de periódicos eletrônicos

6) Citações: utilizar o Sistema Numérico. As citações devem ser feitas por numeração única e consecutiva em sobrecrito, utilizando-se algarismos arábicos, remetendo à lista de referências na mesma ordem em que aparecem no texto. Quando indispensável para a compreensão do texto, combinar(o(s) sobrenome(s) do(s) autor(es) com a indicação do número. Neste caso, a citação será pelo sobrenome de cada um ou pelo nome da entidade responsável que aparece na respectiva referência. Quando se tratar de três autores, todos devem ser citados. No caso de mais de três autores, a citação deve ser feita pelo sobrenome do primeiro autor seguido da expressão et al. (sem itálico). Se a citação estiver inserida no texto utilizar letras maiúsculas e minúsculas; se estiver entre parênteses utilizar somente letras maiúsculas. Exemplos:

Um autor
Segundo Tanaguta2 ou (YANAGUTA2)

Dois autores
Vilela, Martins, Bressan e Carvalho

Três autores
Bennett, Abee e Henrickson12 ou (BENNETT; ABBE; HENRIKSSON2)

Quatro ou mais autores
Vilela, Bennett, Abee, Henrickson e (VILELA; BRESSAN; CARVALHO; MORAIS)

Tarifa de publicação: A tarifa de publicação de R$ 40,00, por página impressa, será cobrada do autor indicado conforme a correspondência, por ocasião da prova final do artigo. Se houver necessidade de impressão em cores, as despesas correrão por conta do autor.