Comparison of the broth microdilution technique and ETEST to ketoconazole front *Malassezia pachydermatis*

Patrícia da Silva NASCENTE¹
Marlete Brum CLEFF²
Ana Raquel Mano MEINERZ²
Melissa Orzechowski XAVIER¹
Luiz Filipe Damé SCHUCH²
Mário Carlos Araújo MEIRELES²
João Roberto Braga de MELLO⁴

Correspondence to:
Faculdade de Veterinária, Programa de Pós-Graduação Veterinária, Universidade Federal de Pelotas (UFPel), Campus Universitário s/n – Capão do Leão – cep96010-900 – e-mail: patsn@bol.com.br – fone/fax: (53) 32759004

Received for publication: 12/07/2007
Aproved for publication: 29/06/2009

Abstract

Malassezia pachydermatis is recognized as a normal inhabitant and an opportunistic pathogen of the external ear canal and skin of dogs and cats. In special clinical conditions, and mainly in the cases of therapeutic failure related to external otitis and dermatitis complicated by this yeast, it is recommended testing susceptibility to antifungal drugs. Different approaches of evaluating the susceptibility of yeasts faced to antifungals in laboratory exist, some of them are commercial approaches and others previously standardized by the CLSI (NCCLS, 2002). The purpose of this study was to evaluate the susceptibility of 17 samples of *M. pachydermatis* from canine external otitis using two different in vitro antifungal susceptibility methods: the Etest® and the broth Microdilution Method (MD) with ketoconazole. The mean MIC observed between the 17 samples were 0.103mg/mL to ETEST and 0.0012mg/mL to MD ranging from 0.004 to 0.75mg/mL in ETEST and 0.0019 and 0.03mg/mL in MD using the same samples. By ETEST, two (11.8%) samples were resistant, eight (47.1%) susceptible and seven (41.1%) showed intermediate susceptibility. Through the MD it was observed four (23.5%) resistant samples, seven (41.2%) susceptible and six (35.3%) samples with intermediate susceptibility. Despite of the percentages being equivalent in each rank of susceptibility through the two techniques, the results do not correspond to the same sample. These results showed that there is an urgent need to standardize those values considered as parameters for growth inhibition of this yeast. Then a simple and efficient method could be used routinely in the laboratory practice.

Key words: *Malassezia pachydermatis*. CLSI. ETEST. Broth microdilution.

Introduction

The interest by the standardization of the susceptibility tests to antifungals is relatively recent. The development of susceptibility tests to antimicrobials has its history linked to the advancements obtained in the antibacterial therapy. With the advent of new chemotherapies, antibiotics and the recognition of resistant bacteria to the penicillin, microbiology laboratories passed it carry out tests of sensitivity.¹ There are two decades, new therapeutic options have being developed and there are fungi resistance, mainly in the yeasts of the genus *Candida* to the drugs commercially available.²³ Due the tests used for *in vitro* evaluation of the antifungal activity was the same used in the evaluation of antibacterial activity, usually, the same techniques are developed: broth dilution, agar dilution and agar diffusion. The final reading of the tests of dilution in liquid and/or solid is going to identify the smaller concentration of the drug that inhibits the
growth of the microorganism studied. Recently the National Committee Clinical Laboratory Standards, nowadays known as Clinical and Laboratory Standards Institute (CLSI), defined two standardized approaches of broth Microdilution as antifungal tests, the M27A2 and the M38P, to some yeasts and fungi filamentous respectively. The NCCLS recommends the use of the RPMI 1640 in the achievement of antifungal susceptibility testing with yeasts (**Candida** spp. and **Cryptococcus** spp.), despite of not to have been used in yeasts of the genus **Malassezia**. Others authors used to the same technique of broth Microdilution, but with Sabouraud dextrose, obtaining better growth of the yeast. However, this is not a routine procedure technique in the laboratory. The ETEST method (agar diffusion) was introduced in 1988 as an alternative for determination of the MIC, being used mainly to confirm the resistance to the antimicrobials. In Brazil, only in 1997, the first study was carried out about antifungal susceptibility testing of **M. pachydermatis**, with the ETEST method.

The ketoconazole is the imidazol more used until now and it presents elevated efficacy against agents of systemic and superficial mycoses. It includes **Malassezia** and others dermatophytes, resistant or not resistant to griseofulvina, to several agents of systemic mycoses, detaching their purpose in the paracoccidioidomycosis and histoplasmosis treatment. It was the first antifungal substance used orally in the systemic mycoses treatments and up to date, is used in non and dermatological mycoses in the veterinary small animals, mainly due to the short value.

Malassezia pachydermatis is recognized as a normal inhabitant and an opportunistic pathogen from the external ear channel and skin of dogs and cats, being considered one of the most frequent microorganisms associated with external otitis in dogs by several authors. This yeast also can be found in the rectum, interdigital, anal sacs and vagina. In the last years, some investigations also pointed out this yeast as cause of canine dermatitis. The purpose of this study was to evaluate the antifungal susceptibility of 17 isolates of **M. pachydermatis** to ketoconazole using two antifungal susceptibility methods.**

Material and Method

The NCCLS broth microdilution method (CLSI) recommendations were adapted to **M. pachydermatis** by Eichenberg et al. and Nascente et al. Ten dilutions of the drug storage solution were prepared obtaining 10 solutions with a gradient 10 times greater than the final solution of each drug used. The ten solutions obtained this way had the drug concentration from 0.0000574 to 0.03mg/mL to ketoconazole and they were put into the first 10 contiguous wells of a sterile microtiter plate. The solution containing each sample of yeast was transferred in aliquots of 100µL into each of the sterile plates that previously had 100µL of the same culture medium, respectively. The plates were incubated at 37°C for 72 hours. The readings were made by visual comparison of the yeast growth into the wells one to ten with wells that had the positive control (wells 11). The lowest concentration that produced a relative significant inhibition (around 50%) of the yeast growth compared to the positive control was identified as the MIC (Minimum Inhibitory Concentrations) of the drug.**

The strips of the Etest have a defined and consistent gradient of the antifungal drug (0.002 to 32.0µg/mL of ketoconazole allowing a quantitative reading. The culture medium used was Sabouraud dextrose agar with chloramphenicol according to the Etest manufacturer’s recommendations. **M. pachydermatis** samples were suspended in saline with turbidity adjusted to level 1 of the McFarland scale and cultivated by
spreading the sample in the culture medium. After 15 minutes, the strips were distributed over the medium and incubated at 37°C. The readings were performed at 48 hours and the lowest concentration (MICs) of the drug was determined by the Etest® strip pattern.

The comparison of the results was carried out with the 17 samples of M. pachydermatis tested. The MICs were calculated according to Coutinho and Paula9 for the Etest® and Eichenberg et al.6 for the broth microdilution method. M. pachydermatis was classified as susceptible (S), intermediary susceptible (I) and resistant (R) using the criteria: S = MIC sample \(\leq \) MIC50, I = MIC50 < MIC sample \(\leq \) MIC90, R = MIC sample > MIC90.

Results and Discussion

The MICs averages observed between the 17 samples evaluated simultaneously with ketoconazole and using the two methodologies were 0.103mg/mL to ETEST and 0.0012mg/mL to Broth Microdilution. The mean MIC presented difference between the two methods, ranging from 0.004 to 0.75mg/mL in the ETEST and from 0.0019 to 0.03mg/mL in BM, using the same M. pachydermatis samples.

Comparing the results obtained with the two methodologies, it can be possible to observe that by the ETEST, two (11.8%) samples were resistant, eight (47.1%) susceptible and seven (41.1%) samples presented intermediate susceptibility. Using the BM method, it was observed four (23.5%) resistant samples, seven (41.2%) susceptible ones and six (35.3%) samples with intermediate susceptibility front the same drug. However, despite the percentages being similar in each rank of susceptibility based on the two methods studied, the results do not correspond to the same for each sample, as can be observed in the table 1.

Considering the samples with similar results (S, I, R) in the both methodologies tested, it was observed an agreement in six (35.3%) samples. Four samples with corroborating results were susceptible and two presented intermediate susceptibility (Table 1).

Independently of the method chosen for the determination of the antifungal MIC, different conditions of achievement of the test alter the final results23. Galgiane et al.28 and Calhoun et al.29 showed that the variability of MIC results obtained with anphotericin B, flucitosin and ketoconazole for yeasts studied in different conditions, should not be accepted; such difference was attributed to the absence of standardization of the method and the factors recognized as responsible for this variability of the results obtained in different laboratories such as: composition of the cultivation medium, pH, time and temperature of inoculation, size of the inoculum and reading criteria4. The culture medium employed in methods of susceptibility to antimicrobials should be capable of support an adequate growth of the microorganisms without, however, because any interaction with the activities of the drugs used in the study.30

| Table 1 - Susceptibility to ketoconazole in Microdilution broth technique and ETEST front 17 M. pachydermatis isolates from ear canal of dogs obtained in the Faculdade de Veterinária (UFPel) in 2007 |
|---|---|---|---|
| Microdilution broth technique | I | R | S | Total |
| ETEST | 2 | 1 | 3 | 7 |
| I | 3 | 0 | 1 | 4 |
| R | 1 | 1 | 4 | 8 |
| S | 3 | 3 | 3 | 7 |
| Total | 6 | 4 | 7 | 17 (100%) |

I - Intermediary susceptibility; R - Resistant; S - Susceptible
Nascente et al. observed that KTZ MICs for Etest® ranged from 0.002 to 0.25 mg/mL and the MIC average was 0.057 mg/mL. The broth microdilution method showed a MIC ranging from 0.03 to 8 mg/mL and a MIC average of 1.28 mg/mL. The MIC results of the Etest® obtained in this study had a wide range of higher values and an average MIC higher than that reported by Coutinho and Paula. These authors found a MIC average of 0.08 mg/mL (0.015 to 0.25 mg/mL) and MIC values lower than the data obtained by Uchida, Nakade and Kitazawa that ranged from 0.002 mg/mL to 10 mg/mL, but similar to the values obtained by Lorenzini, Mercantini and Bernardis and Mickelsen et al.

The concentrations of the antifungal drugs tested were different for each of the two techniques and for this reason it was not possible to estimate whether there was a coincidence in the MICs found in each of the tests alone. It was possible to establish relations between the values just after classifying the yeast isolates in susceptible, intermediary susceptible, and resistant using the susceptibility calculation (Table 1).

The differences between the methods did not allow an analysis-in-depth of the results because the MIC test is highly dependent of factors such as the inoculum concentration, chemical composition of the medium, pH, temperature, and incubation time. The results found in this work showed that it is possible to compare the degree of susceptibility to each antifungal drug but without compare the MICs. To compare the MIC values, it is necessary an agreement for the drug concentrations to be tested in both methods because the Etest® have a broader range for drug concentrations than the broth Microdilution test.

Conclusion

The aspects related to the different methods indicate the necessity of a standardized method that could be widely used in research and in mycology laboratories as in the same manner as in bacteriology. More studies about the MICs of *Malassezia pachydermatis* are necessary to standardize the values for growth inhibition of the yeast in both methods, allowing comparisons of results obtained from different laboratories.

Comparação da técnica de microdiluição em caldo e ETEST para o cetoconazol frente à Malassezia pachydermatis

Resumo

Malassezia pachydermatis é reconhecida como um habitante normal e patógeno oportunista do meato acústico externo e da pele de cães e gatos. Em condições clínicas especiais e em casos de falha terapêutica relatada em otite externa e dermatite complicada por esta levedura, é recomendado o teste de susceptibilidade antifúngica. Existem diferentes métodos de avaliação da susceptibilidade da levedura frente a antifúngicos em laboratório, alguns métodos comerciais e outros previamente padronizados pelo CLSI (NCCLS, 2002). O objetivo deste estudo foi o de avaliar a susceptibilidade de 17 amostras de *Malassezia pachydermatis* provenientes de otite externa canina por meio de duas técnicas *in vitro* de antifungigramas: o Etest® e a microdiluição em caldo (MC) com o cetoconazol. A media da Concentração Inibitória Mínima (CIM) observada entre as 17 amostras foram 0.103 mg/mL para o ETEST e 0.0012 mg/mL para a MC variando de 0.004 a 0.75 mg/mL no ETEST e entre 0.0019 e 0.03 mg/mL na MC usando as mesmas amostras. Pelo ETEST, duas (11.8%) amostras foram resistentes, oito (47.1%) sensíveis e sete (41.1%) mostraram...
sensibilidade intermediária. Na MC foram observadas quatro (23,5%) amostras resistentes, sete (41,2%) sensíveis e seis (35,3%) amostras com sensibilidade intermediária. Apesar das porcentagens de sensibilidade serem semelhantes pelas duas técnicas, os resultados do CIM não correspondem na uma mesma amostra. Estes resultados mostraram que há uma urgente necessidade de padronização dos valores considerados como parâmetros para inibição do crescimento da levedura. Portanto, um método simples e eficiente deveria ser usado rotina na prática de laboratório.

References

