EFFECTS OF AMITRAZ ON ISOLATION-INDUCED AGGRESSION IN MICE

EFEITOS DO PRAGUICIDA AMITRAZ NO COMPORTAMENTO AGRESSIVO INDUZIDO PELO ISOLAMENTO SOCIAL EM CAMUNDONGOS

Michiko SAKATE1; Jorge Camilo FLÓRIO2; João PALERMO NETO2

SUMMARY

The effects of amitraz, a formamidine derivative, on isolation-induced aggression were studied in mice. Results show that amitraz increased the latency to the first attack and increased not only the fight duration but also the frequencies of attacks and tail flickings. These results suggested that pesticide effects on aggressive behavior could be a consequence of its inhibitory effects on monoamine oxidase activity within the Central Nervous System, most probably through the increments it produces on serotonin levels.

UNITERMS: Amitraz; Aggressive behavior; Social isolation; Serotonin; Catecholamines; Mice

Contrarily to other pesticides, amitraz, a formamidine derivative, widely used in Veterinary clinical practice for the treatment of demodicosis does not stimulate Central Nervous System (CNS). Although acute intoxications with this pesticide are not common, signs and symptoms of CNS depression such as sedation, loss of the righting reflex, motor incoordination and coma were already described after it’s use on large doses. The dose of 195 mg/kg was that reported to be the oral and acute amitraz (Triatox®) LD50 in male rats.

Amitraz induced depression, however, is not un especific. Pesticide effects were already related to an MAO-I-like action within the CNS; indeed, it was shown that it inhibited monoamine oxidase (MAO) activity both in liver and brain of rats and also that it crosses the blood brain barrier. Recently, it was found that perinatal exposure to amitraz induced developmental changes and alterations in the motor function of rat pups. Acute amitraz administration increased also pentobarbital sleeping time in mice and the convulsive threshold doses of rats to several convulsants.

Hand-operated counters and stopwatches were employed to score the following parameters: latency to the 1st attack (time in s to the 1st attack), fight duration (total s of fight), attack frequency (number of attacks) and tail flicking frequency (number of tail flickings). To minimise possible circadian changes in mice’s behavior, control and experimental observations were alterned, the mice being observed at the same time of the day (between 8:00 and 13:00 h). Since the obtained results were homocedastic an analysis of variance (ANOVA) followed by Duncan’s least significant difference (LSD) was used to analyse all data. Results were considered significant when p < 0.05.

As it can be seen in Fig. 1, amitraz administration was able to decrease isolation-induced aggression in mice. Thus, pesti-
cide administration increased in a dose-dependent way the latency to the 1st attack (F=12.44; df=3/24; p<0.05) and decreased also in a dose-dependent way, not only the attack frequency (F=10.5; df=3/24; p<0.05), but also the fight duration (F=3.57; df=3/24; p<0.05) and the tail flicking frequency (F=4.71; df=3/24; p<0.05). Further analysis of mice behavior after amitraz administration showed that animals presented not only sedation but also motor incoordinations; these signs were detected 10 min. after the 50.0 mg/kg dose, 20 min. after the 20 mg/kg dose and 80 min. after the smaller pesticide dose (0.5 mg/kg), lasting for at least 24 h.

According to FLÓRIO et al.**, amitraz administration in rats, through it's MAOI-like activity, increased the whole brain levels of noradrenaline, the striatal levels of dopamine and the brain stem levels of serotonin, decreasing at the same time the striatal levels of homovanillic acid and the brain stem levels of 5-hydroxyindoleacetic acid. Since changes in aggressive behavior of laboratory animals are often associated with modifications in brain monoamine turnover or levels*, the present results could be a consequence of pesticide effects on catecholaminergic and/or on serotoninergic pathways.

DOPA per se or combined with MAO inhibitors induces irritability and fighting in rats and mice*. Under certain conditions aggressiveness is positively related to brain noradrenaline levels19. Thus, amitraz effects might not be attributed to modifications in catecholaminergic pathways; indeed, pesticide administration reduced isolated-aggression induced aggression and, as observed previously, induced sedation and motor incoordination2-5**.

Serotonin depletion causes excitability and aggressiveness10 which suggests an inhibitory influence for this amine on behavior. It was already demonstrated that the firings of the axosomatic synapses containing 5-HT of the amygdaloid neurons, decreased sharply after 5-hydroxytryptophan (5-HTP) administration10. The administration of 5-HTP supresses not only the mouse-killing behavior of rats, but also the aggressive behavior induced in rats by PCPA administration and the isolation-induced aggression in mice11. Consequently, a possible hypothesis to explain the present observed decrease in mice aggressiveness would be the increment induced by amitraz on brain serotonin levels. Thus the possibility in raised that amitraz effects on isolation-induced aggression in mice were also a consequence of it's MAOI-like effects. Accordingly, MAOI agents such as pargyline decreased inter-male aggression in rats11. It should not be forgotten, however, that amitraz is also an agonist at alpha2-adrenoceptors* since these receptors were already related to aggressive behavior6.

RESUMO
Estudaram-se os efeitos do amitraz, um derivado formamidínico, no comportamento agressivo induzido pelo isolamento social em camundongos. Os resultados mostraram que o amitraz aumentou a latência para o primeiro ataque e diminuiu não somente a duração de briga como as frequências de ataques entre esses animais. Estes resultados sugeriram que os efeitos do praguicida sobre o comportamento agressivo dos camundongos foram consequência de um efeito inibitório do mesmo sobre a atividade da enzima monoamina oxidase no Sistema Nervoso Central, e, consequentemente, de um aumento dos níveis cerebrais de serotonin.

AKNOWLEDGEMENTS
This work, part of the PhD thesis presented by M. Sakate to the School of Veterinary Medicine of the University of São Paulo, was supported by a fellowship from PADCT/CAPES.

REFERENCES
13-RANDRUP, A.; MUNKYARD, I. Relation of brain cat-

* SAKATE, M.; FLÓRIO, J.C.; PALERMO NETO, J. Developmental and behavioral effects of prenatal amitraz administration in rats. Arch. Toxicol. (No prelo)
Effects of amitraz administration (stripped columns) on isolation induced aggression in mice. Amitraz was administered intraperitoneally 90 min. before behavioral evaluations. * p<0.05 in relation to control data (open columns - analysis of variance, Duncan's test).

FIGURE 1