Chitosan level effects on fermentation profile and chemical composition of sugarcane silage

Authors

  • Tiago Antonio Del Valle Universidade Federal do Pampa, Campus Itaqui https://orcid.org/0000-0001-8093-7132
  • Giovani Antonio Universidade Federal de São Carlos, Centro de Ciências Agrárias, Departamento de Biotecnologia e Produção Vegetal e Animal
  • Elissandra Maiara de Castro Zilio Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Nutrição e Produção Animal
  • Mauro Sérgio da Silva Dias Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Nutrição e Produção Animal
  • Jefferson Rodrigues Gandra Universidade Federal do Sul e Sudeste do Pará, Instituto de Estudos em Desenvolvimento Agrário e Regional, Faculdade de Agronomia de Marabá
  • Filipe Alexandre Boscaro de Castro Universidade Estadual de Londrina, Centro de Ciências Agrárias, Departamento de Zootecnia
  • Mariana Campana Universidade Federal de São Carlos, Centro de Ciências Agrárias, Departamento de Biotecnologia e Produção Vegetal e Animal
  • Jozivaldo Prudêncio Gomes de Morais Universidade Federal de São Carlos, Centro de Ciências Agrárias, Departamento de Biotecnologia e Produção Vegetal e Animal

DOI:

https://doi.org/10.11606/issn.1678-4456.bjvras.2020.162942

Keywords:

Acetic acid, Chitin, Degradation, Ethanol, Neutral detergent fiber

Abstract

This study aimed to evaluate the effects of increasing levels of chitosan (CHI) on sugarcane fermentation profile and losses, chemical composition, and in situ degradation. Treatments were: 0, 1, 2, 4, and 8 g of CHI/kg of dry matter (DM). Twenty experimental silos (PVC tubing with diameter 28 cm and height 25 cm) were used. Sand (2 kg) was placed at the bottom of each silo to evaluate effluent losses, and silos were weighed 60 d after ensiling to calculate gas losses. Samples were collected from the center of the silo mass to evaluate silage chemical composition, in situ degradation, fermentation profile, and mold and yeast count. Data were analyzed as a completely randomized design, and the treatment effect was decomposed using polynomial regression. Chitosan linearly increased acetic acid and NH3-N concentration, while yeast and mold count, and ethanol concentration decreased. Intermediary levels of CHI (from 4.47 to 6.34 g/kg DM) showed the lower values of effluent, gas, and total losses. There was a quadratic effect of CHI on the content of non-fiber carbohydrates, neutral and acid detergent, and in situ DM degradation. The lowest fiber content was observed with levels between 7.01 and 7.47 g/kg DM, whereas the highest non-fiber carbohydrate content and in situ DM degradation were found with 6.30 and 7.17 g/kg DM of CHI, respectively. Chitosan linearly increased acetic acid and NH3-N concentration, whereas it linearly reduced ethanol concentration and count of yeast and mold. Thus, intermediary levels of CHI, between 4.47 and 7.47 g/kg of DM, decrease fermentation losses and improve the nutritional value of sugarcane silage.

Downloads

Download data is not yet available.

References

Abrão FO, Medeiros AO, Rosa CA, Geraseev LC, Rodriguez NM, Duarte ER. Yeasts naturally occurring in sorghum silage. Zootec Trop. 2017;35(1-2):86-90. APHA: American Health Association. Compendium of methods for the microbiological examination of foods. 4th ed. Washington: APHA; 2001.

AOAC: Association of Official Analytical Chemists. Official Methods of Analysis. 17th ed. Arlington: AOAC, 2000.

Ávila CLS, Valeriano ARJ, Pinto C, Figueiredo HCP, Rezende AV, Schwan RF. Chemical and microbiological characteristics of sugar cane silages treated with microbial inoculants. Braz J Vet Res Anim Sci. 2010;39(1):25-32. http://www.doi.org/10.1590/S1516-35982010000100004.

Casali AO, Detmann E, Valadares Filho SC, Pereira JC, Henriques LT, Freitas SG, Paulino MF. Influence of incubation time and particles size on indigestible compounds contents in cattle feeds and feces obtained by in situ procedures. Science Braz J Vet Res Anim Sci. 2008;37:335-42. http://www.doi.org/10.1590/S1516-35982008000200021.

Daniel JLP, Checolli M, Zwielehner J, Junges D, Fernandes J, Nussio LG. The effects of Lactobacillus kefiri and L. brevis on the fermentation and aerobic stability of sugarcane silage. Anim Feed Sci Technol. 2015;205(7):69-74. http://www.doi.org/10.1016/j.anifeedsci.2015.04.015.

Danner H, Holzer M, Mayrhuber E, Braun R. Acetic acid increases stability of silage under aerobic conditions. Appl Environ Microbiol. 2003;69(1):562-7. http://www.doi.org/10.1128/AEM.69.1.562-567.2003. PMid:12514042.

Del Valle TA, Zenatti TF, Antonio G, Campana M, Gandra JR, Zilio EMC, Mattos LFA, Morais JPG. Effect of chitosan on the preservation quality of sugarcane silage. Grass Forage Sci. 2018;73(3):630-8. http://www.doi.org/10.1111/gfs.12356.

Del Valle TA, Antonio G, Zenatti TF, Campana M, Zilio EMC, Ghizzi LG, Gandra JR, Osório JAC, De Morais JPG. Effects of xylanase on the fermentation profile and chemical composition of sugarcane silage. J Agric Sci. 2019;156(9):1123- 9. http://www.doi.org/10.1017/S0021859618001090.

Gandra JR, Oliveira ER, Takiya CS, Goes RHTB, Paiva PG, Oliveira KMP, Gandra ERS, Orbach ND, Haraki HMC. Chitosan improves the chemical composition, microbiological quality, and aerobic stability of sugarcane silage. Anim Feed Sci Technol. 2016;214(4):44-52. http://www.doi.org/10.1016/j.anifeedsci.2016.02.020.

Goy RC, Brito D, Assis OBG. A review of the antimicrobial activity of chitosan. Polymerous. 2009;19(3):241-7. http://www.doi.org/10.1590/S0104-14282009000300013.

Hernández-Lauzardo AN, Bautista-Baños S, VelazquezDel Valle MG, Mendez-Montealvo MG, Sanchez-Rivera MM, Bello-Perez LA. Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifera (Ehrenb.:Fr.) Vuill. Carbohydr Polym. 2008;73(4-5):541-7. http://www.doi.org/10.1016/j.carbpol.2007.12.020. PMid:26048219.

Jacovaci FA, Jobim CC, Schmidt P, Nussio LG, Daniel PJL. A data-analysis on the conservation and nutritive value of sugarcane silage treated with calcium oxide. Anim Feed Sci Technol. 2017;225(3):1-7. http://www.doi.org/10.1016/j.anifeedsci.2017.01.005.

Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int J Food Microbiol. 2010;144(1):51-63. http://www.doi.org/10.1016/j.ijfoodmicro.2010.09.012. PMid:20951455.

Lopes J, Evangelista AR. Fermentative and bromatological characteristics and population of yeast of sugarcane silage enriched with urea and with additive absorbent of humidity. Science Braz J Vet Res Anim Sci. 2010;39(5):984-91. http://www.doi.org/10.1590/S1516-35982010000500007.

McDonald P, Henderson AR, Heron SJE. The biochemistry of silage. Marlow, UK: Chalcomb Publications; 1991. 340 p. Muck RE. Silage microbiology and its control through additives. Science Braz J Vet Res Anim Sci. 2010;39(Suppl spe.):183- 91. http://www.doi.org/10.1590/S1516-35982010001300021.

Muck RE, Nadeau EMG, Mcallister TA, ContrerasGovea FE, Santos MC, Kung L Jr. Silage review: recent advances and future uses of silage additives. J Dairy Sci. 2018;101(5):3980-4000. http://www.doi.org/10.3168/jds.2017-13839. PMid:29685273.

Paiva PG, Jesus EF, Del Valle TA, Almeida GF, Costa AGBVB, Consentini CEC, Zanferari F, Takiya CS, Bueno ICS, Rennó FP. Effects of chitosan on ruminal fermentation, nutrient digestibility, and milk yield and composition of dairy cows. Anim Prod Sci. 2017;57(2):301-7. http://www.doi.org/10.1071/AN15329.

Pryce JDA. A modification of the barker-summerson method for the determination of lactic acid. Analyst (Lond). 1969;94(125):1151-2. http://www.doi.org/10.1039/an9699401151. PMid:5358920.

Rabelo CSS, Härter CJ, Ávila CLS, Reis RA. Meta‐analysis of the effects of Lactobacillus plantarum and Lactobacillus buchneri on fermentation, chemical composition and aerobic stability of sugarcane silage. Grassl Sci. 2019;65(1):3-12. http://www.doi.org/10.1111/grs.12215.

Santos WCC, Nascimento WG, Magalhães ARL, Silva DKA, Silva WJCS, Santana AVS, Soares GSC. Nutritive value, total losses of dry matter and aerobic stability of the silage from three varieties of sugarcane treated with commercial microbial additives. Anim Feed Sci Technol. 2015;204(6):1- 8. http://www.doi.org/10.1016/j.anifeedsci.2015.03.004.

Tachaboonyakiat W. Antimicrobial applications of chitosan. Chitosan Based Biomaterials. 2017;2:245-74. http://www.doi.org/10.1016/B978-0-08-100228-5.00009-2.

Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, non-starch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74(10):3583- 97. http://www.doi.org/10.3168/jds.S0022-0302(91)78551-2. PMid:1660498.

Yan Y, Li X, Guan H, Huang L, Ma X, Peng Y, Li Z, Nie G, Zhou J, Yang W, Cai Y, Zhang X. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria. Bioresour Technol. 2019;279(3):166-73. http://www.doi.org/10.1016/j.biortech.2019.01.107. PMid:30721817.

Downloads

Published

2020-10-06

Issue

Section

FULL ARTICLE

How to Cite

1.
Del Valle TA, Antonio G, Zilio EM de C, Dias MS da S, Gandra JR, Castro FAB de, et al. Chitosan level effects on fermentation profile and chemical composition of sugarcane silage. Braz. J. Vet. Res. Anim. Sci. [Internet]. 2020 Oct. 6 [cited 2024 Apr. 17];57(3):e162942. Available from: https://revistas.usp.br/bjvras/article/view/162942