Acute exposure to hyperosmotic conditions reduces sperm activation by urine in the yellowtail tetra Astyanax altiparanae, a freshwater teleost fish

Authors

  • Nathalia Alcântara Rocha Universidade Estadual de São Paulo, Departamento de Zoologia ; Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental, Laboratório de Biotecnologia de Peixes
  • Gabriel Marra Schade Universidade Estadual de São Paulo, Departamento de Zoologia ; Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental, Laboratório de Biotecnologia de Peixes
  • Álvaro de Miranda Alves Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal
  • Claudia de Souza Silva Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal
  • Jacqueline Megumi Nakirimoto Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal
  • Liura Sanchez Lauri Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal
  • Lucca Gobatto Campos Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal
  • Marcelo Galvão dos Santos Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal
  • Nicole Nascimento Mesquita Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal
  • Rachel Sordi Relvas Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal
  • Rafaella Fernandes Carnevale Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal
  • Se Yoon Oh Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal
  • Victoria Portela Diniz Gaia Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal
  • Vivian Renata Kida Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal
  • Eneiva Carla Carvalho Celeghini Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal
  • Mayra Elena Ortiz D´'Ávila Assumpção Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal
  • José Augusto Senhorini Universidade Estadual de São Paulo, Departamento de Zoologia ; Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental, Laboratório de Biotecnologia de Peixes
  • Hatus de Oliveira Siqueira Universidade Estadual de São Paulo, Departamento de Zoologia ; Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental, Laboratório de Biotecnologia de Peixes
  • Nivaldo Ferreira Nascimento Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental, Laboratório de Biotecnologia de Peixes ; Universidade Estadual de São Paulo, Centro de Aquicultura
  • Luciano Andrade Silva Universidade de São Paulo, Faculdade de Medicina Veterinária e Ciência Animal, Departamento de Reprodução Animal
  • Talita Maria Lázaro Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental, Laboratório de Biotecnologia de Peixes
  • José Antonio Visintin Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal
  • Paulo Sérgio Monzani Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental, Laboratório de Biotecnologia de Peixes
  • George Shigueki Yasui Universidade Estadual de São Paulo, Departamento de Zoologia ; Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental, Laboratório de Biotecnologia de Peixes ; Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal https://orcid.org/0000-0002-6105-8308

DOI:

https://doi.org/10.11606/issn.1678-4456.bjvras.2020.166205

Keywords:

Fish, Urospermia, Sperm contamination, Salinity

Abstract

In freshwater fish with external fertilization, sperm sampling can be contaminated with urine, which triggers motility and gives rise to decreased fertilization success. The maintenance of freshwater fish in hyperosmotic conditions may reduce urine production and improve sperm quality. Thus, the aim of this work was to verify if acute exposure to various NaCl concentrations improves sperm quality in the yellowtail tetra Astyanax altiparanae. Spermiation was induced using a single dose of carp pituitary gland (5 mg kg-1) and the males were maintained at various NaCl concentrations: NaCl 0.00% (control), NaCl 0.45% (hypoosmotic), NaCl 0.9% (isosmotic) and NaCl 1.0% (hyperosmotic) for 6 h at 26 °C. Sperm was collected and verified for activation by urine and motility traits. At 0.00%, 0.45%, and 0.90%, the sperm was motile just after sampling, indicating activation by urine. Surprisingly, at hyperosmotic conditions, no activation was observed. Other sperm and motility parameters did not show any statistical differences, including sperm viability (P = 0.7083), concentration (P = 0.9030), total motility (P = 0.6149), VCL (curvilinear velocity; P = 0.1216), VAP (average path velocity; P = 0.1231) and VSL (straight-line velocity; P = 0.1340). Our results indicate that acute maintenance at hyperosmotic conditions eliminates sperm activation by urine and maintains sperm quality. Such a new procedure is interesting for both basic and applied sciences, including reproductive practice in fish.

Downloads

Download data is not yet available.

References

Arias ME, Andara K, Briones E, Felmer R. Bovine sperm separation by Swim-up and density gradients (Percoll and BoviPure): effect on sperm quality, function and gene expression. Reprod Biol. 2017;17(2):126-32. http://www.doi.org/10.1016/j.repbio.2017.03.002. PMid:28363502.

Baldisserotto B, Mancera JM, Kapoor BG. Fish osmoregulation. Boca Raton: CRC Press; 2019. http://www.doi.org/10.1201/9780429063909.

Barros Mothé G, Scott C, Sicherle CC, Guaitolini CRF, Dell’aqua CPF, Dantas Malossi C, Araújo-Júnior JP, Souza FF. Sperm sexing with density gradient centrifugation in dogs. Anim Reprod Sci. 2018;199:84-92. http://www.doi.org/10.1016/j.anireprosci.2018.11.003. PMid:30455095.

Beirão J, Boulais M, Gallego V, O’Brien JK, Peixoto S, Robeck TR, Cabrita E. Sperm handling in aquatic animals for artificial reproduction. Theriogenology. 2019;133:161- 78. http://www.doi.org/10.1016/j.theriogenology.2019.05.004. PMid:31108371.

Cosson J. Fish sperm physiology: structure, factors regulating motility, and motility evaluation. In: Bozkurt Y, editor. Biological research in aquatic science. London: IntechOpen; 2019.

Dzyuba V, Shelton WL, Kholodnyy V, Boryshpolets S, Cosson J, Dzyuba B. Fish sperm biology in relation to urogenital system structure. Theriogenology. 2019;132:153- 63. http://www.doi.org/10.1016/j.theriogenology.2019.04.020. PMid:31022605.

Ellerbrock RE, Honorato J, Curcio BR, Stewart JL, Souza JAT, Love CC, Lima FS, Canisso IF. Effect of urine contamination on stallion semen freezing ability. Theriogenology. 2018;117:1- 6. http://www.doi.org/10.1016/j.theriogenology.2018.05.010. PMid:29800826.

Ericsson RJ, Langevin CN, Nishino M. Isolation of fractions rich in human Y sperm. Nature. 1973;246(5433):421-4. http://www.doi.org/10.1038/246421a0. PMid:4587152.

Evans DH. Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol Regul Integr Comp Physiol. 2008;295(2):R704-13. http://www.doi.org/10.1152/ajpregu.90337.2008. PMid:18525009.

Fernandes K, Gomes A, Calado L, Yasui G, Assis D, Henry T, Fonseca A, Pinto E. Toxicity of cyanopeptides from two microcystis strains on larval development of astyanax altiparanae. Toxins. 2019;11(4):220. http://www.doi.org/10.3390/toxins11040220. PMid:31013880.

Galarza DA, Ladrón de Guevara M, Beltrán-Breña P, SánchezCalabuig MJ, Rizos D, López-Sebastián A, Santiago-Moreno J. Influence of sperm filtration and the addition of glycerol to UHT skimmed milk- and TEST-based extenders on the quality and fertilizing capacity of chilled ram sperm. Theriogenology. 2019;133:29-37. http://www.doi.org/10.1016/j.theriogenology.2019.04.027. PMid:31055159.

Gallego V, Asturiano JF. Fish sperm motility assessment as a tool for aquaculture research: a historical approach. Rev Aquacult. 2019;11(3):697-724. http://www.doi.org/10.1111/raq.12253.

Gomes-Alves S, Alvarez M, Nicolas M, Martínez-Rodríguez C, Borragán S, Chamorro CA, Anel L, De Paz P. Salvaging urospermic ejaculates from brown bear (Ursus arctos). Anim Reprod Sci. 2014;150(3–4):148-57. http://www.doi.org/10.1016/j.anireprosci.2014.09.007. PMid:25278437.

Gonçalves BB, Nascimento NF, Santos MP, Bertolini RM, Yasui GS, Giaquinto PC. Low concentrations of glyphosatebased herbicide cause complete loss of sperm motility of yellowtail tetra fish Astyanax lacustris. J Fish Biol. 2018;92(4):1218-24. http://www.doi.org/10.1111/jfb.13571. PMid:29488225.

Gonzalez RJ. The physiology of hyper-salinity tolerance in teleost fish: a review. J Comp Physiol B. 2012;182(3):321-9. http://www.doi.org/10.1007/s00360-011-0624-9. PMid:22033744.

Kopeika J, Kopeika E, Zhang T, Rawson DM, Holt WV. Detrimental effects of cryopreservation of loach (Misgurnus fossilis) sperm on subsequent embryo development are reversed by incubating fertilised eggs in caffeine. Cryobiology. 2003;46(1):43-52. http://www.doi.org/10.1016/S0011-2240(02)00162-1. PMid:12623027.

Król J, Żarski D, Bernáth G, Palińska-Żarska K, Krejszeff S, Długoński A, Horváth Á. Effect of urine contamination on semen quality variables in Eurasian perch Perca fluviatilis L. Anim Reprod Sci. 2018;197:240-6. http://www.doi.org/10.1016/j.anireprosci.2018.08.034. PMid:30170881.

Labbe C, Maisse G. Characteristics and freezing tolerance of brown trout spermatozoa according to rearing water salinity. Aquaculture. 2001;201(3-4):287-99. http://www.doi.org/10.1016/S0044-8486(01)00607-X.

Linhart O, Cheng Y, Rodina M, Gela D, Tučková V, Shelton WL, Tinkir M, Memiş D, Xin M. AQUA_2020_1080: sperm management of European catfish (Silurus glanis L.) for effective reproduction and genetic conservation. Aquaculture. 2020;529:735620. http://www.doi.org/10.1016/j.aquaculture.2020.735620.

Lowe JN. Diagnosis and management of urospermia in a commercial Thoroughbred stallion. Equine Vet Educ. 2001;13(1):4-7. http://www.doi.org/10.1111/j.2042-3292.2001.tb01873.x.

Makler A, David R, Blumenfeld Z, Better OS. Factors affecting sperm motility. VII. Sperm viability as affected by change of pH and osmolarity of semen and urine specimens. Fertil Steril. 1981;36(4):507-11. http://www.doi.org/10.1016/S0015-0282(16)45802-4. PMid:7286273.

McCormick SD. Endocrine control of osmoregulation in teleost fish. Am Zool. 2001;41(4):781-94. http://www.doi.org/10.1093/icb/41.4.781.

Nascimento NF, Pereira-Santos M, Levy-Pereira N, Monzani PS, Niedzielski D, Fujimoto T, Senhorini JA, Nakaghi LSO, Yasui GS. High percentages of larval tetraploids in the yellowtail tetra Astyanax altiparanae induced by heat-shock: the first case in Neotropical characins. Aquaculture. 2020;520:734938. http://www.doi.org/10.1016/j.aquaculture.2020.734938.

Nascimento NF, Pereira-Santos M, Piva LH, Manzini B, Fujimoto T, Senhorini JA, Yasui GS, Nakaghi LSO. Growth, fatty acid composition, and reproductive parameters of diploid and triploid yellowtail tetra Astyanax altiparanae. Aquaculture. 2017;471:163- 71. http://www.doi.org/10.1016/j.aquaculture.2017.01.007.

Nynca J, Dietrich GJ, Kuźmiński H, Dobosz S, Ciereszko A. Motility activation of rainbow trout spermatozoa at pH 6.5 is directly related to contamination of milt with urine. Aquaculture. 2012;330-333:185-8. http://www.doi.org/10.1016/j.aquaculture.2011.12.023.

Porto-Foresti F, Almeida RBC, Foresti F. Biologia e criação do lambari-do-rabo-amarelo (Astyanax altiparanae). In: Baldisserto B, Gomes LC, editors. Espécies nativas para a piscicultura no Brasil. Santa Maria: UFSM; 2005. p. 105-20.

Poupard GP, Paxion C, Cosson J, Jeulin C, Fierville F, Billard R. Initiation of carp spermatozoa motility and early ATP reduction after milt contamination by urine. Aquaculture. 1998;160(3-4):317-28. http://www.doi.org/10.1016/S0044-8486(97)00301-3.

Rurangwa E, Kime DE, Ollevier F, Nash JP. The measurement of sperm motility and factors affecting sperm quality in cultured fish. Aquaculture. 2004;234(1-4):1-28. http://www.doi.org/10.1016/j.aquaculture.2003.12.006.

Santos M, Yasui G, Xavier P, Adamov NSM, Nascimento NF, Fujimoto T, Senhorini JA, Nakaghi LS. Morphology of gametes, post-fertilization events and the effect of temperature on the embryonic development of Astyanax altiparanae (Teleostei, Characidae). Zygote. 2016;24(6):795-807. http://www.doi.org/10.1017/S0967199416000101. PMid:27220819.

Sardella BA, Brauner CJ. The effect of elevated salinity on “California” Mozambique tilapia (Oreochromis mossambicus x O. urolepis hornorum) metabolism. Comp Biochem Physiol C Toxicol Pharmacol. 2008;148(4):430-6. http://www.doi.org/10.1016/j.cbpc.2008.05.006. PMid:18571989.

Sarosiek B, Dryl K, Krejszeff S, Zarski D. Characterization of pikeperch (Sander lucioperca) milt collected with a syringe and a catheter. Aquaculture. 2016;450:14-6. http://www.doi.org/10.1016/j.aquaculture.2015.06.040.

Varner DD, Blanchard TL, Love CL, Garcia MC, Kenney RM. Effects of semen fractionation and dilution ratio on equine spermatozoal motility parameters. Theriogenology. 1987;28(5):709-23. http://www.doi.org/10.1016/0093-691X(87)90288-3. PMid:16726354.

Wilson-Leedy JG, Ingermann RL. Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology. 2007;67(3):661-72. http://www.doi.org/10.1016/j.theriogenology.2006.10.003. PMid:17137620.

Xavier PLP, Senhorini JA, Pereira-Santos M, Fujimoto T, Shimoda E, Silva LA, Santos SA, Yasui GS. A flow cytometry protocol to estimate DNA content in the yellowtail tetra Astyanax altiparanae. Front Genet. 2017;8:131. http://www.doi.org/10.3389/fgene.2017.00131. PMid:28993791.

Yasui GS, Fujimoto T, Arias-Rodriguez L, Takagi Y, Arai K. The effect of ions and cryoprotectants upon sperm motility and fertilization success in the loach Misgurnus anguillicaudatus. Aquaculture. 2012a;344-349(349):147- 52. http://www.doi.org/10.1016/j.aquaculture.2012.03.005.

Yasui GS, Fujimoto T, Arias-Rodriguez L, Takagi Y, Arai K. The effect of ions and cryoprotectants upon sperm motility and fertilization success in the loach Misgurnus anguillicaudatus. Aquaculture. 2012b;344-349(349):147- 52. http://www.doi.org/10.1016/j.aquaculture.2012.03.005.

Yasui GS, Senhorini J, Shimoda E, Pereira-Santos M, Nakaghi LS, Fujimoto T, Arias-Rodriguez L, Silva LA. Improvement of gamete quality and its short-term storage: an approach for biotechnology in laboratory fish. Animal. 2015;9(3):464- 70. http://www.doi.org/10.1017/S1751731114002511. PMid:25391393.

Downloads

Published

2020-10-07

Issue

Section

FULL ARTICLE

Funding data

How to Cite

Acute exposure to hyperosmotic conditions reduces sperm activation by urine in the yellowtail tetra Astyanax altiparanae, a freshwater teleost fish. (2020). Brazilian Journal of Veterinary Research and Animal Science, 57(3), e166205. https://doi.org/10.11606/issn.1678-4456.bjvras.2020.166205