Effect of filling technique and light-curing exposure time on the hardness of bulk-fill resin composites

Authors

  • João Felipe Besegato Faculdade de Odontologia de Araraquara
  • Débora de Castro Costa Petrin Universidade Estadual de Londrina
  • Giovana Cazarim da Costa Universidade Estadual de Londrina
  • Lucas Fernando de Oliveira Tomaz Ferraresso Universidade Estadual de Londrina
  • Márcio Grama Hoeppner Universidade Estadual de Londrina

DOI:

https://doi.org/10.11606/issn.2357-8041.clrd.2020.170336

Keywords:

Composite Resin, Polymerization, Hardness

Abstract

Objectives: This study evaluated the effect of filling techniques and light-curing time on Vickers hardness of bulk fill composite resins (BFCR). Methods: BFCR high viscosity Opus Bulk Fill (OBF) and low viscosity Opus Bulk Fill Flow (OBFF), were placed in cylindrical samples of poly methyl methacrylate with height and internal diameter of 4 mm, and randomly assigned into six groups (G) according to the filling technique (I1-single increment of 4 mm thickness and I2 – increment of 2 mm thickness) and light-curing time of each increment with an irradiance of 1000 mW/cm2 (T1 – 20 seconds and T2 – 40 seconds): G1 – OBFI1T1, G2 – OBFI2T1, G3 – OBFI1T2, G4 – OBFI2T2, G5 – OBFF+OBFI2T1 e G6 – OBFF+OBFI2T2. Hardness was measured in the top and bottom surface of each sample. Twoway ANOVA followed by Tukey’s post-test were used for analysis with a significance level of 5%. Results: There was no difference in hardness on the top surface, regardless of the filling technique and light-curing exposure time used. However, in the bottom surface differences were observed regarding the filling technique and light-curing time, except between the G3 and G4 groups. All samples showed significant hardness reduction at the bottom compared to the top surface. Conclusions: The lowest light-curing time (20 seconds) must be considered with caution, as it resulted in the reduction of hardness in the area farther from the light source. The OBFF exhibited lower hardness than OBF, despite of the light-curing exposure time.

Downloads

Download data is not yet available.

Author Biographies

João Felipe Besegato, Faculdade de Odontologia de Araraquara

Departamento de Odontologia Restauradora, Faculdade de Odontologia de Araraquara, Universidade Estadual Paulista (Unesp), Araraquara, SP, Brasil

Débora de Castro Costa Petrin, Universidade Estadual de Londrina

Departamento de Odontologia Restauradora, Universidade Estadual de Londrina (UEL), Londrina, PR, Brasil

Giovana Cazarim da Costa, Universidade Estadual de Londrina

Departamento de Odontologia Restauradora, Universidade Estadual de Londrina (UEL), Londrina, PR, Brasil

Lucas Fernando de Oliveira Tomaz Ferraresso, Universidade Estadual de Londrina

Departamento de Odontologia Restauradora, Universidade Estadual de Londrina (UEL), Londrina, PR, Brasil

Márcio Grama Hoeppner, Universidade Estadual de Londrina

Departamento de Odontologia Restauradora, Universidade Estadual de Londrina (UEL), Londrina, PR, Brasil

References

Heintze SD, Rousson V, Hickel R. Clinical effectiveness of direct anterior restorations: a meta-analysis. Dent Mater J. 2015;31(5):481‐95. doi: https://doi.org/10.1016/j.dental.2015.01.015

Yap AU, Pandya M, Toh WS. Depth of cure of contemporary bulk-fill resin-based composites. Dent Mater J. 2016;35(3):503‐10. doi: https://doi.org/10.4012/dmj.2015-402

Alkhudhairy FI. The effect of curing intensity on mechanical properties of different bulk-fill composite resins. Clin Cosmet Investig Dent. 2017;9:1‐6. doi: https://doi.org/10.2147/CCIDE.S130085

Shimokawa CA, Turbino ML, Harlow JE, Price HL, Price RB. Light output from six battery operated dental curing lights. Mater Sci Eng C Mater Biol Appl. 2016;69:1036‐42. doi: https://doi.org/10.1016/j.msec.2016.07.033

Nassar HM, Ajaj R, Hasanain F. Efficiency of light curing units in a government dental school. J Oral Sci. 2018;60(1):142‐6. doi: https://doi.org/10.2334/josnusd.17-0071

Sakaguchi RL, Douglas WH, Peters MC. Curing light performance and polymerization of composite restorative materials. J Dent. 1992;20(3):183‐8. doi: https://doi.org/10.1016/0300-5712(92)90136-z

Kovarik RE, Ergle JW. Fracture toughness of posterior composite resins fabricated by incremental layering. J Prosthet Dent. 1993;69(6):557‐60. doi: https://doi.org/10.1016/0022-3913(93)90280-2

Fronza BM, Rueggeberg FA, Braga RR, Mogilevych B, Soares LE, Martin AA, et al. Monomer conversion, microhardness, internal marginal adaptation, and shrinkage stress of bulk-fill resin composites. Dent Mater. 2015;31(12):1542-51. doi: https://doi.org/10.1016/j.dental.2015.10.001

Soygun K, Unal M, Ozer A, Gulnahar E, Bolayır G. Effects of different curing unites on bulk fill composites. Int J Oral Dent Health. 2015;1:13. doi: https://doi.org/10.23937/2469-5734/1510013

Alshali RZ, Salim NA, Satterthwaite JD, Silikas N. Post-irradiation hardness development, chemical softening, and thermal stability of bulk-fill and conventional resin-composites. J Dent. 2015;43(2):209‐18. doi: https://doi.org/10.1016/j.jdent.2014.12.004

Marovic D, Tauböck TT, Attin T, Panduric V, Tarle Z. Monomer conversion and shrinkage force kinetics of low-viscosity bulk-fill resin composites. Acta Odontol Scand. 2015;73(6):474‐80. doi: https://doi.org/10.3109/00016357.2014.992810

Abbas G, Fleming GJ, Harrington E, Shortall AC, Burke FJ. Cuspal movement and microleakage in premolar teeth restored with a packable composite cured in bulk or in increments. J Dent. 2003;31(6):437‐44. doi: https://doi.org/10.1016/s0300-5712(02)00121-5

Alqudaihi FS, Cook NB, Diefenderfer KE, Bottino MC, Platt JA. Comparison of internal adaptation of bulk-fill and increment-fill resin composite materials. Oper Dent. 2019;44(1):E32‐E44. doi: https://doi.org/10.2341/17-269-L

Do T, Church B, Veríssimo C, Hackmyer SP, Tantbirojn D, Simon JF, et al. Cuspal flexure, depth-of-cure, and bond integrity of bulk-fill composites. Pediatr Dent. 2014;36(7):468‐73.

Hirata R, Kabbach W, Andrade OS, Bonfante EA, Giannini M, Coelho PG. Bulk fill composites: an anatomic sculpting technique. J Esthet Restor Dent. 2015;27(6):335‐43. doi: https://doi.org/10.1111/jerd.12159

Al-Nabulsi M, Daud A, Yiu C, Omar H, Sauro S, Fawzy A, et al. Co-blend application mode of bulk fill composite resin. Materials (Basel). 2019;12(16):2504. doi: https://doi.org/10.3390/ma12162504

Kim EH, Jung KH, Son SA, Hur B, Kwon YH, Park JK. Effect of resin thickness on the microhardness and optical properties of bulk-fill resin composites. Restor Dent Endod. 2015;40(2):128‐35. doi: https://doi.org/10.5395/rde.2015.40.2.128

Engelhardt F, Hahnel S, Preis V, Rosentritt M. Comparison of flowable bulk-fill and flowable resin-based composites: an in vitro analysis. Clin Oral Investig. 2016;20(8):2123‐30. doi: https://doi.org/10.1007/s00784-015-1700-4

Papadogiannis D, Tolidis K, Gerasimou P, Lakes R, Papadogiannis Y. Viscoelastic properties, creep behavior and degree of conversion of bulk fill composite resins. Dent Mater. 2015;31(12):1533‐41. doi: https://doi.org/10.1016/j.dental.2015.09.022

Ilie N, Bucuta S, Draenert M. Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent. 2013;38(6):618‐25. doi: https://doi.org/10.2341/12-395-L

Fabianelli A, Sgarra A, Goracci C, Cantoro A, Pollington S, Ferrari M. Microleakage in class II restorations: open vs closed centripetal build-up technique. Oper Dent. 2010;35(3):308‐13. doi: https://doi.org/10.2341/09-128-L

Roggendorf MJ, Krämer N, Appelt A, Naumann M, Frankenberger R. Marginal quality of flowable 4-mm base vs. conventionally layered resin composite. J Dent. 2011;39(10):643‐7. doi: https://doi.org/10.1016/j.jdent.2011.07.004

Kelić K, Matić S, Marović D, Klarić E, Tarle Z. Microhardness of bulk-fill composite materials. Acta Clin Croat. 2016;55(4):607‐14. doi: https://doi.org/10.20471/acc.2016.55.04.11

Rocha MG, Oliveira D, Correa IC, Correr-Sobrinho L, Sinhoreti M, Ferracane JL, et al. Light-emitting diode beam profile and spectral output influence on the degree of conversion of bulk fill composites. Oper Dent. 2017;42(4):418-27. doi: https://doi.org/10.2341/16-164-L

Shawkat ES, Shortall AC, Addison O, Palin WM. Oxygen inhibition and incremental layer bond strengths of resin composites. Dent Mater. 2009;25(11):1338‐46. doi: https://doi.org/10.1016/j.dental.2009.06.003

Farahat F, Daneshkazemi AR, Hajiahmad Z. The effect of bulk depth and irradiation time on the surface hardness and degree of cure of bulk-fill composites. J Dent Biomater. 2016;3(3):284‐91.

Moszner N, Fischer UK, Ganster B, Liska R, Rheinberger V. Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent Mater. 2008;24(7):901‐7. doi: https://doi.org/10.1016/j.dental.2007.11.004

Bucuta S, Ilie N. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin Oral Investig. 2014;18(8):1991‐2000. doi: https://doi.org/10.1007/s00784-013-1177-y

Garoushi S, Vallittu P, Shinya A, Lassila L. Influence of increment thickness on light transmission, degree of conversion and micro hardness of bulk fill composites. Odontology. 2016;104(3):291‐7. doi: https://doi.org/10.1007/s10266-015-0227-0

Chesterman J, Jowett A, Gallacher A, Nixon P. Bulk-fill resin-based composite restorative materials: a review. Br Dent J. 2017;222(5):337‐44. doi: https://doi.org/10.1038/sj.bdj.2017.214

Bouschlicher MR, Rueggeberg FA, Wilson BM. Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper Dent. 2004;29(6):698‐704.

Aranha AM, Giro EM, Hebling J, Lessa FC, Costa CA. Effects of light-curing time on the cytotoxicity of a restorative composite resin on odontoblast-like cells. J Appl Oral Sci. 2010;18(5):461‐6. doi: https://doi.org/10.1590/s1678-77572010000500006

Salehi S, Gwinner F, Mitchell JC, Pfeifer C, Ferracane JL. Cytotoxicity of resin composites containing bioactive glass fillers. Dent Mater. 2015;31(2):195‐203. doi: https://doi.org/10.1016/j.dental.2014.12.004

Toh WS, Yap AU, Lim SY. In vitro biocompatibility of contemporary bulk-fill composites. Oper Dent. 2015;40(6):644‐52. doi: https://doi.org/10.2341/15-059-L

Son SA, Roh HM, Hur B, Kwon YH, Park JK. The effect of resin thickness on polymerization characteristics of silorane-based composite resin. Restor Dent Endod. 2014;39(4):310‐8. doi: https://doi.org/10.5395/rde.2014.39.4.310

Hahnel S, Dowling AH, El-Safty S, Fleming GJ. The influence of monomeric resin and filler characteristics on the performance of experimental resin-based composites (RBCs) derived from a commercial formulation. Dent Mater. 2012;28(4):416‐23. doi: https://doi.org/10.1016/j.dental.2011.11.016

Besegato JF, Jussiani EI, Andrello AC, Fernandes RV, Salomão FM, Vicentin BLS, et al. Effect of light-curing protocols on the mechanical behavior of bulk-fill resin composites. J Mech Behav Biomed Mater. 2019;90:381‐7. doi: https://doi.org/10.1016/j.jmbbm.2018.10.026

AlShaafi MM, AlQussier A, AlQahtani MQ, Price RB. Effect of mold type and diameter on the depth of cure of three resin-based composites. Oper Dent. 2018;43(5):520-9. doi: https://doi.org/10.2341/17-122-L

Price RB, Rueggeberg F, Harlow J, Sullivan B. Effect of mold type, diameter, and uncured composite removal method on depth of cure. Clin Oral Investig. 2016;20(7):1699-707. doi: https://doi.org/10.1007/s00784-015-1672-4

Al-Nahedh HN, Alawami Z. Fracture resistance and marginal adaptation of capped and uncapped bulk-fill resin-based materials. Oper Dent. 2020;45(2):E43‐E56. doi: https://doi.org/10.2341/17-367-L

Oliveira D, Rocha MG, Correr AB, Ferracane JL, Sinhoreti M. Effect of beam profiles from different light emission tip types of multiwave light-emitting diodes on the curing profile of resin-based composites. Oper Dent. 2019;44(4):365-78. doi: https://doi.org/10.2341/16-242

Shimokawa CAK, Turbino ML, Giannini M, Braga RR, Price RB. Effect of light curing units on the polymerization of bulk fill resin-based composites. Dent Mater. 2018;34(8):1211‐21. doi: https://doi.org/10.1016/j.dental.2018.05.002

Published

2020-08-20

Issue

Section

Literature review