O Batólito Catolé do Rocha (RN-PB): Um magmatismo granítico do tipo-A2 reduzido no Domínio Rio Piranhas-Seridó, Província Borborema, Nordeste do Brasil

Autores

  • Robson Rafael de Oliveira Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte
  • Frederico Castro Jobim Vilalva Universidade Federal do Rio Grande do Norte
  • Adriana Alves Universidade de São Paulo, Instituto de Geociências
  • Vladimir Cruz de Medeiros Serviço Geológico do Brasil
  • Clarissa de Aguiar Dalan Universidade Federal do Rio Grande do Norte

DOI:

https://doi.org/10.11606/issn.2316-9095.v20-166190

Palavras-chave:

Batólito Catolé do Rocha, Granitos tipo-A, Litoquímica, Condições de cristalização, Província Borborema

Resumo

O Batólito Catolé do Rocha, situado no Domínio Rio Piranhas-Seridó da Província de Borborema (Nordeste (NE) do Brasil), é um importante representante do magmatismo ediacarano pós-colisional que acometeu essa região. Ele inclui sienogranitos e quartzo sienitos metaluminosos a ligeiramente peraluminosos, rochas básico-intermediárias e, subordinadamente, diques e/ou bolsões de microgranitos menores. Esse batólito é tido como representante da suíte cálcio-alcalina de alto K, que inclui principalmente granitos de afinidade química próxima aos de tipo-I caledonianos. Contudo, são diversas as evidências litoquímicas que aproximam o batólito aos magmas de tipo-A. As rochas graníticas são álcali-cálcicas a alcalinas, possuem caráter ferroano, concentrações significativas de elementos litófilos de raio grande (LILE) e de alto potencial iônico (HFSE) e enriquecimento de terras-raras leves (LREE) sobre pesados (HREE). Suas assinaturas químicas permitem classificá-los como granitos de tipo‑A2 pós-colisionais. Estimativas geotermobarométricas apontam cristalização sob pressões de 4,6 – 6,3 kbar (~16 – 24 km de profundidade) e temperaturas entre 950 – 750°C, em condições de baixa fugacidade de oxigênio (-4 < ΔQFM < -1). Evidências químicas
e distintas condições redox estimadas para os granitos e rochas básico-intermediárias do batólito sugerem que se trata de magmas distintos, com misturas do tipo mixing e mingling locais. A origem do batólito parece estar relacionada a fontes enriquecidas (metassomatizadas), com diferenciação controlada principalmente por processos de cristalização fracionada.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Ague, J. J. (1997). Thermodynamic calculation of emplacement pressures for batholithic rocks, California: implications for the aluminum-in-hornblende barometer. Geology, 25(6), 563‑566. https://doi.org/10.1130/0091-7613(1997)025<0563:TCOE

PF>2.3.CO;2

Almeida, F. F. M., Hasui, Y., Brito Neves, B. B., Fuck, R. A. (1981). Brazilian structural provinces: an introduction. Earth- Science Reviews, 17(1-2), 1-29. https://doi.org/10.1016/0012-8252(81)90003-9

Anderson, J. L. (1996). Status of thermobarometry in granitic batholiths. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2), 125-138. https://doi.org/10.1017/S0263593300006544

Anderson, J. L., Barth, A. P., Wooden, J. L., Mazdab, F. (2008). Thermometers and thermobarometers in granitic systems. Reviews in Mineralogy and Geochemistry, 69(1), 121-142. https://doi.org/10.2138/rmg.2008.69.4

Anderson, J. L., Smith, D. R. (1995). The effect of temperatures and oxygen fugacity on Al-in-hornblende barometry. American Mineralogist, 80(5-6), 549-559. https://doi.org/10.2138/am-1995-5-614

Angelim, L. A. A., Medeiros, V. C., Nesi, J. R. (2006). Programa Geologia do Brasil - PGB. Projeto Mapa Geológico e de Recursos Minerais do Estado do Rio Grande do Norte. Mapa Geológico do Estado do Rio Grande do Norte. Escala 1:500.000. Recife: CPRM/FAPERN. Available at: <http://www.cprm.gov.br/publique/media/geologia_basica/cartografia_regional/mapa_rio_grande_norte.pdf>. Accessed on: Jan. 28, 2020.

Antunes, A. F., Galindo, A. C., Alves da Silva, F. C., Jardim de Sá, E. F., Souza Lima, R. F. (2000). Magmatismo Granítico de afinidade Subalcalina/Monzonítica no Maciço São José de Campestre, Província Borborema (NE do Brasil): O exemplo do Plúton de Monte das Gameleiras. Geochimica Brasiliensis, 14(1), 51-69. Available at: <http://www.ppegeo.igc.usp.br/index.php/geobras/article/view/10483>. Accessed on: Aug. 19, 2020.

Archanjo, C. J., Bouchez, J. L., Corsini, M., Vauchez, A. (1994). The Pombal granite pluton: magnetic fabric, emplacement and relationships with the Brasiiano strike-slip setting of the NE Brazil (Paraíba State). Journal of Structural Geology, 16(3), 323-335. https://doi.org/10.1016/0191-8141(94)90038-8

Archanjo, C. J., Macedo, J. W. P., Galindo, A. C. X., Araújo, M. G. S. (1998). Brasiliano crustal extension and emplacement fabrics of the mangerite-charnockite pluton of Umarizal, Northeast Brazil. Precambrian Research, 87(1-2), 19-32. https://doi.org/10.1016/S0301-9268(97)00050-8

Archanjo, C. J., Trindade, R. I. F., Bouchez, J. L., Ernesto, M. (2002). Granite fabrics and regional-scale strain partitioning in the Seridó belt (Borborema Province, NE Brazil). Tectonics, 21(1), 3-1-3-14. https://doi.org/10.1029/2000TC001269

Archanjo, C. J., Viegas, L. G. F., Hollanda, M. H. B. M., Souza, L. C., Liu, D. (2013). Timing of the HT/LP transpression in the Neoproterozoic Seridó Belt (Borborema Province, Brazil): constraints from UPb (SHRIMP) geochronology and implications for the connections between NE Brazil and West Africa. Gondwana Research, 23(2), 701-714. https://doi.org/10.1016/j.gr.2012.05.005

Ballard, J. R., Palin, J. M., Campbell, I. H. (2002). Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144, 347‑364. https://doi.org/10.1007/s00410-002-0402-5

Bea, F. (2012). The sources of energy for crustal melting and the geochemistry of heatproducing elements. Lithos, 153, 278-291. https://doi.org/10.1016/j.lithos.2012.01.017

Blundy J., Wood B. (1994). Prediction of crystal-melt partition coefficients from elastic moduli. Nature, 372, 452‑454. https://doi.org/10.1038/372452a0

Bonin, B. (2007). A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2), 1-29. https://doi.org/10.1016/j.lithos.2006.12.007

Boynton, W. V. (1984). Geochemistry of the rare earth elements: meteorite studies. In: P. Henderson, P. (Ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier, v. 2, p. 63-114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3

Breiter, K., Lamarão, C. N., Borges, R. M. K., Dall’Agnol, R. (2014). Chemical characteristic of zircon from A-type granites and comparison to zircon of S-type granites. Lithos, 192-195, 208-225. https://doi.org/10.1016/j.lithos.2014.02.004

Brito Neves, B. B, Santos, E. D., Van Schmus, W. R. (2000). Tectonic history of the Borborema Province. In: U. Cordani, E. J. Milani, A. Thomaz Filho, D. A. Campos (Eds.). Tectonic Evolution of South America (p. 151-182). Rio de Janeiro: 31st International Geological Congress Special Publication.

Caby, R., Sial, A. N., Arthaud, M. H., Vauchez, A. (1991). Crustal Evolution and the Brasiliano Orogeny in Northeast Brazil. In: R. D. Dallmeyer, J. P. Lecorche (Eds.). The West African Orogens and Circum-Atlantic Correlatives (p. 373-397). Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-84153-8_16

Calzia, J. P., Rämö, O. T. (2005). Miocene rapakivi granites in the southern Death Valley region, California, USA. Earth-Science Reviews, 73(1-4), 221-243. https://doi.org/10.1016/j.earscirev.2005.07.006

Campos, B. C. S. (2016). Petrografia, litoquímica, química mineral e termobarometria de rochas cálcioalcalinas de alto K de textura porfirítica, ediacaranas, no extremo NE da Província Borborema (NE do Brasil). MSc Dissertation. Natal: Programa de Pós-Graduação em Geodinâmica e Geofísica, Universidade Federal do Rio Grande do Norte. Available at: <https://repositorio.ufrn.br/jspui/handle/123456789/21307>. Accessed on: Jan. 20. 2020.

Campos, C. S. C., Vilalva, F. C. J., Nascimento, M. A., Galindo, A. C. (2016). Crystallization conditions of porphyritic high-K calc-alkaline granitoids in the extreme northeastern Borborema Province, NE Brazil, and geodynamic implications. Journal of South American Earth Sciences, 70, 224-236. https://doi.org/10.1016/j.jsames.2016.05.010

Campos, T. F. C., Neiva, A. M. R., Nardi, L. S. V. (2000). Geochemistry of granites and their minerals from Serra Negra do Norte Pluton, northeastern Brazil. Chemie der Erde, 60(4), 279-303.

Castro, A. (2019). The dual origin of I-type granites: The contribution from laboratory experiments. Geological Society Special Publications, 491, 101-145. https://doi.org/10.1144/SP491-2018-110

Chappell, B. W., Stephens, W. E. (1988). Origin of infracrustal (I-type) granite magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 79(2-3), 71-86. https://doi.org/10.1017/S0263593300014139

Christiansen, E. H. (2009). PetroMode. Faculty Publications, 1334. Brigham: Brigham Young University. Available at: <https://scholarsarchive.byu.edu/facpub/1334>. Accessed on: Aug. 19, 2020.

Claiborne, L. L., Miller, C. F., Wooden, J. L. (2010). Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology, 160(4), 511-531. https://doi.org/10.1007/s00410-010-0491-5

Clemens, J. D., Holloway, J. R., White, A. J. R. (1986). Origin of an A-type granite: experimental constraints. American Mineralogist, 71(3-4), 317-324.

Cocherie, A. (1986). Systematic use of trace element distribution patterns in log-log diagrams for plutonic suites. Geochimica et Cosmochimica Acta, 50(11), 2517-2522. https://doi.org/10.1016/0016-7037(86)90034-7

Collins, W. J., Beams, S. D., White, A. J. R., Chappell, B. W. (1982). Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80, 189-200. https://doi.org/10.1007/BF00374895

Cunha, A. L. C., Costa, A. P., Cavalcante, R., Dantas, A. R. (2018). Projeto ARIM Seridó – Folha Catolé do Rocha SB.24-Z-A-III, Estados da Paraíba e do Rio Grande do Norte. Carta geológica-Geofísica. 1 mapa colorido, 90,00 cm x 75,00 cm. Escala 1:100.000. Avaliação dos Recursos Minerais do Brasil. Recife: CPRM – Serviço Geológico do Brasil. Available at: <http://rigeo.cprm.gov.br/jspui/handle/doc/18668>. Accessed on: Jan. 28, 2020.

Cunha, I. R. V., Dall’Agnol, R., Feio, G. R. L. (2016). Mineral chemistry and magnetic petrology of the Archean Planalto Suite, Carajas Province–Amazonian Craton: Implications for the evolution of ferroan Archean granites. Journal of South American Earth Sciences, 67, 100-121. https://doi.org/10.1016/j.jsames.2016.01.007

Dalan, C. A., Vilalva, F. C. J., Nascimento, M. A. L. (2019). Reavaliação das condições de cristalização de granitos alcalinos ediacaranos dos domínios Rio Piranhas-Seridó e São José do Campestre, Província Borborema, NE-Brasil. Geologia USP. Série Científica, 19(1), 129-152. https://doi.org/10.11606/issn.2316-9095.v19-149112

Dall’Agnol, R., Oliveira, D. C. (2007). Oxidized, magnetiteseries, rapakivi-type granites of Carajás, Brazil: implications for classification and petrogenesis of A-type granites. Lithos, 93(3-4), 215-233. https://doi.org/10.1016/j.lithos.2006.03.065

De La Roche, H., Leterrier, J., Granclaude, P., Marchal, M. (1980). A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analyses. Its relationship with current nomenclature. Chemical Geology, 29(1-4), 183-210. https://doi.org/10.1016/0009-2541(80)90020-0

Eby, G. N. (1990). The A-type granitoids a review of their occurrence and chemical characteristics and speculations their petrogenesis. Lithos, 26(1-2), 115-134. https://doi.org/10.1016/0024-4937(90)90043-Z

Eby, G. N. (1992). Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20(7), 641‑644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

Eby, G. N. (2011). A-type granites: magma sources and their contribution to the growth of the continental crust. 7th Hutton Symposium on Granites and Related Rocks. Avila, Spain.

Ferreira, A. C., Dantas, E. L., Fuck, R. A., Nedel, I. M. (2020). Arc accretion and crustal reworking from late Archean to Neoproterozoic in Northeast Brazil. Scientific Reports, 10(1), 7855. https://doi.org/10.1038/s41598-020-64688-9

Ferry, J. M., Watson, E. B. (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154, 429-437. https://doi.org/10.1007/s00410-007-0201-0

Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of Petrology, 42(11), 2033-2048. https://doi.org/10.1093/petrology/42.11.2033

Frost, C. D., Frost, B. R. (2011). On ferroan (A-type) granitoids: their compositional variability and modes of origin. Journal

of Petrology, 52(1), 39-53. https://doi.org/10.1093/petrology/egq070

Gonçalves, L. C. (2009). Contribuição geofísica a análise do arcabouço tectônico do Domínio Rio Grande do Norte, Província Borborema – NE Brasil. Dissertation (Mastering). Brasília: Instituto de Geociências, Universidade de Brasília. Available at <https://core.ac.uk/download/pdf/33540762.pdf>. Accessed on: Aug. 19, 2020.

Grebennikov, A. V. (2014). A-type granites and related rocks: petrogenesis and classification. Russian Geology and Geophysics, 55(11), 1354-1356. https://doi.org/10.1016/j.rgg.2014.10.011

Griffin, W. L., Powell, W. J., Pearson, N. J., O’Reilly, S. Y. (2008). GLITTER: data reduction software for laser ablation ICP-MS. In: P. Sylvester (Ed.). Laser Ablation ICP-MS in the Earth Sciences: Current practices and outstanding issues (v. 40, p. 307-311). Vancouver: Mineralogical Association of Canada.

Guimarães, I. P., Silva Filho, A. F., Almeida, C. N., Van Schmus, W. R., Araújo, J. M., Melo, S. C., Melo, E. B. (2004). Brasiliano (Pan-African) granitic magmatism in the Pajeú-Paraíba belt, Northeast Brazil: an isotopic and geochronological approach. Precambrian Research, 135(1-2), 23-53. https://doi.org/10.1016/j.precamres.2004.07.004

Harrison, T. M., Watson, E. B. (1984). The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7), 1467-1477. https://doi.org/10.1016/0016-7037(84)90403-4

Hayden, L. A., Watson, E. B. (2007). Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth and Planetary Science Letters, 258(3-4), 561-568. https://doi.org/10.1016/j.epsl.2007.04.020

Hayden, L. A., Watson, E. B., Wark, D. A. (2008). A thermobarometer for sphene (titanite). Contributions to Mineralogy and Petrology, 155, 529-540. https://doi.org/10.1007/s00410-007-0256-y

Holland, T., Blundy, J. (1994). Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4), 433-447. https://doi.org/10.1007/BF00310910

Hollanda, M. H. B., Archanjo, C. J., Souza, L. C., Dunyi, L., Armstrong, R. (2011). Long-lived paleoproterozoic granitic magmatism in the Seridó-Jaguaribe domain, Borborema Province–NE Brazil. Journal of South American Earth Sciences, 32(4), 287-300. https://doi.org/10.1016/j.jsames.2011.02.008

Hollister, L. S., Grissom, G. C., Peters, E. K., Stowell, H. H., Sisson, V. B. (1987). Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72(3-4), 231-239.

Hoskin, P. W. O., Ireland, T. R. (2000). Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(7), 627-630. https://doi.org/10.1130/0091-7613(2000)28%3C627:REECOZ%3E2.0.CO;2

Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27(145), 293-305. https://doi.org/10.11456/shigenchishitsu1951.27.293

Janasi, V. A., Vlach, S. R. F., Campos Neto, M. C., Ulbrich, H. H. (2009). Associated A-type subalkaline and high-K calcalkaline granites in the Itu granite province, southeastern Brazil: petrological and tectonic significance. The Canadian Mineralogist, 47(6), 1505-1526. https://doi.org/10.3749/canmin.47.6.1505

Janoušek, V., Farrow, C. M., Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6), 1255-1259. https://doi.org/10.1093/petrology/egl013

Jardim de Sá, E. F. (1994). A Faixa Seridó (Província Borborema, NE do Brasil) e o seu significado geodinâmico na cadeia Brasiliana/Pan-Africana. Brasília. Thesis (Doctoring). Brasília: Programa de Pós-graduação em Geologia, Instituto de Geociências, Universidade de Brasília.

Jardim de Sá, E. F., Macedo, M. H., Fuck, R. A., Kawashita, K. (1992). Terrenos proterozóicos na Província Borborema e a margem norte do Cráton São Francisco. Brazilian Journal of Geology, 22(4), 472-480.

Jiang, X. Y., Ling, M. X., Wu, K., Zhang, Z. K., Sun, W. D., Sui, Q. L., Xia, X. P. (2018). Insights into the origin of coexisting A1-and A2-type granites: implications from zircon Hf-O isotopes of the Huayuangong intrusion in the lower Yangtze River Belt, eastern China. Lithos, 318-319, 230-243. https://doi.org/10.1016/j.lithos.2018.08.008

Kay, R. W., Kay, S. M. (1993). Delamination and delamination magmatism. Tectonophysics, 219(1-3), 177-189. https://doi.org/10.1016/0040-1951(93)90295-U

King, P. L., Chappell, B. W., Allen, C. M., White, A. J. R. (2001). Are A-type granites the high-emperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4), 501-514. https://doi.org/10.1046/j.1440-0952.2001.00881.x

King, P. L., White, A. J. R., Chappel, B. W., Allen, C. M. (1997). Characterization and origin of aluminous A-type granites from the Lachland fold belt, southeastern Australia. Journal of Petrology, 38(3), 371-391. https://doi.org/10.1093/petroj/38.3.371

Lameyre, J. (1987). Granites and evolution of the crust. Revista Brasileira de Geociências, 17(4), 349-359. Available at: <http://www.ppegeo.igc.usp.br/index.php/rbg/article/view/11926>. Accessed on: Sept. 17, 2020.

Laurent, O., Martin, H., Moyen, J.-F., Doucelance, R. (2014). The diversity and evolution of late-Archean granites: Evidence for the onset of a “modern-style” platetectonics between 3.0 and 2.5 Ga. Lithos, 205, 208-235. https://doi.org/10.1016/j.lithos.2014.06.012

Lima, J. V., Guimarães, I. P., Santos, L., Amorim, J. V. A., Farias, D. J. S. (2017). Geochemical and isotopic characterization of the granitic magmatism along the Remígio-Pocinhos shear zone, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 75, 116‑133. https://doi.org/10.1016/j.jsames.2017.02.004

Lustrino, M. (2005). How the delamination and detachment of lower crust can influence basaltic magmatism. Earth-Science Reviews, 72(1-2), 21-38. https://doi.org/10.1016/j.earscirev.2005.03.004

Martin, R. F. (2006). A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos, 91(1-4), 125-136. https://doi.org/10.1016/j.lithos.2006.03.012

McDonough, W. F., Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120(3-4), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4

Medeiros, V. C., Amaral, C. A., Rocha, D. E. G. A., Santos, R. B. (2008a). Geologia e Recursos Minerais da Folha Sousa SB.24-X-A. Escala 1:250.000. Estados da Paraíba, Rio Grande do Norte e Ceará. Recife: CPRM – Serviço Geológico do Brasil. Available at <http://rigeo.cprm.gov.br/jspui/handle/doc/10861>. Accessed on: Jan. 28, 2020.

Medeiros, V. C., Galindo, A. C., Nascimento, M. A. L. (2008b). Litogeoquímica do Batólito de Catolé do Rocha (RN-PB), porção W do Domínio Rio Grande do Norte da Província Borborema. Estudos Geológicos, 18(1), 28-44. Available at: <http://www3.ufpe.br/estudosgeologicos/>. Accessed on: Aug. 19, 2020.

Medeiros, V. C., Galindo, A. C., Nascimento, M. A. L., Freire, A. G. (2007). Geologia, petrografia e idade do Batólito de Catolé do Rocha (RN-PB), porção W do Domínio Rio Grande do Norte da Província Borborema. Revista de Geologia, 20, 219-230.

Middlemost, E. A. K. (1985). Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. London and New York: Longman. 266 p.

Molina, J. F., Moreno, J. A., Castro, A., Rodríguez, C., Fershtater, G. B. (2015). Calcic amphibole thermobarometry in metamorphic and igneous rocks: new calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232, 286-305. https://doi.org/10.1016/j.lithos.2015.06.027

Mori, P. E., Reeves, S., Correia, C. T., Haukka, M. (1999). Development of a fused glass disc XRF facility and comparison with the pressed powder pellet technique at Instituto de Geociências, São Paulo University. Revista Brasileira de Geociências, 29(3), 441-446. https://doi.org/10.25249/0375-7536.199929441446

Nardi, L. V. S., Bitencourt, M. F. (2009). A-type granitic rocks in post-collisional settings in southernmost Brazil: their classification and relationship with tectonics and magmatic series. Canadian Mineralogist, 47(6), 1493-1503. https://doi.org/10.3749/canmin.47.6.1493

Nascimento, M. A. L., Galindo, A. C., Medeiros, V. C. (2015). Ediacaran to Cambrian magmatic suites in the Rio Grande do Norte domain, extreme Northeastern Borborema Province (NE of Brazil): Current knowledge. Journal of South American Earth Sciences, 58, 281-299. https://doi.org/10.1016/j.jsames.2014.09.008

Nascimento, M. A. L., Medeiros, V. C., Galindo, A. C. (2008). Magmatismo Ediacarano a Cambriano no Domínio Rio Grande do Norte, Província Borborema, NE do Brasil. Estudos Geológicos, 18(1), 4-29. Available at: <http://www3.ufpe.br/estudosgeologicos/>. Accessed on: Aug. 19, 2020.

Nédélec, A., Bouchez, J. L. (2015). Granites: petrology, structure, geological setting, and metallogeny. Oxford Scholarship Online. https://doi.org/10.1093/acprof:oso/9780198705611.001.0001

O’Neill, H. St. C. (1988). Systems Fe–O and Cu–O: thermodynamic data for the equilibria Fe–“FeO,” Fe–Fe3O4, “FeO”–Fe3O4, Fe3O4–Fe2O3, Cu–Cu2O, and Cu2O–CuO rom emf measurements. American Mineral, 73, 470-486. Available at: <http://www.minsocam.org/msa/collectors_corner/amtoc/toc1988.htm>. Accessed on: Aug. 19, 2020.

Patiño-Douce, A. (1997). Generation of metaluminous A-type granites by low pressure melting of calcalkaline granitoids. Geology, 25(8), 743-746. https://doi.org/10.1130/0091-7613(1997)025%3C0743:GOMATG%3E2.3.CO;2

Peacock, M. A. (1931). Classification of igneous rock series. The Journal of Geology, 39(1), 54-67. https://doi.org/10.1086/623788

Pearce, J. (1996). Sources and settings of granitic rocks. Episodes, 19(4), 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005

Pearce, J. A., Harris, N. B., Tindle, A. G. (1984). Trace elemento discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956-983. https://doi.org/10.1093/petrology/25.4.956

Pitcher, W. S. (1983). Granite type and tectonic environment. 1st Symposium on Mountain Building, 19-40. London: Academic Press.

Pitcher, W. S. (1997). The nature and origin of granite. London: Chapman & Hall.

Ridolfi, F., Renzulli, A., Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1), 45-66. https://doi.org/10.1007/s00410-009-0465-7

Rogers, J. J. W., Greenberg, J. K. (1981). Trace elements in continental margin magmatism. Part III. Alkali granites and their relationship to cratonization. Bulletin Geological Society of America, 92(1), 6-9. https://doi.org/10.1130/0016-7606(1981)92<6:TEICMP>2.0.CO;2

Rudnick, R. L., Gao, S. (2003). Composition of the continental crust. In: R. L. Rudnick (Ed.). Treatise on geochemistry (p. 1-64). Amsterdam: Elsevier.

Rybach, L. (1988). Determination or heat production rate. In: R. Haenel, L. Rybach, L. Stegena (Eds.). Handbook of terrestrial-flow density determinations (p. 125-142). Dordrecht: Kluwer Academic Publishers.

Santos, E. J. (1996). Ensaio preliminar sobre terrenos e tectônica acrescionária na Província Borborema. Congresso Brasileiro de Geologia, 39, 47-50. Salvador: SBG.

Santos, E. J., Brito Neves, B. B., Van Schmus, W. R., Oliveira, R. G., Medeiros, V. C. (2000). An overall view on the displaced terrane arrangement of the Borborema Province, NE Brazil. International Geological Congress, 31, 5-9. Rio de Janeiro.

Santos, L. D. L., Dantas, E. L., Cawood, P. A., Lages, G. D. A., Lima, H. M., Santos, E. J. (2018). Accretion Tectonics in Western Gondwana Deduced From Sm-Nd Isotope Mapping of Terranes in the Borborema Province, NE Brazil. Tectonics, 37(8), 2727-2743. https://doi.org/10.1029/2018TC005130

Sawaki, Y., Suzuki, K., Asanuma, H., Okabayashi, S., Hattori, K., Saito, T., Hirata, T. (2017). Geochemical characteristics of zircons in the Ashizuri A-type granitoids: An additional granite topology tool for detrital zircon studies. Island Arc, 26(6), e12216. https://doi.org/10.1111/iar.12216

Schmidt, M. W. (1992). Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-inhornblende barometer. Contributions to Mineralogy and Petrology, 110(2-3), 304-310. https://doi.org/10.1007/BF00310745

Smythe, D. J., Brenan, J. M. (2015). Cerium oxidation state in silicate melts: combined fo2, temperature and compositional effects. Geochemica et Cosmochimica Acta, 170, 173-187. https://doi.org/10.1016/j.gca.2015.07.016

Souza, V. O., Galindo, A. C., Alves da Silva, F. C. (2017). O Stock Flores: Exemplo de magmatismo granítico tipo-A no Domínio Rio Piranhas-Seridó, NE da Província Borborema. Pesquisas em Geociências, 44(2), 345-366. https://doi.org/10.22456/1807-9806.78278

Souza, Z. S., Kalsbeek, F., Deng, X. D., Frei, R., Kokfelt, T.F., Dantas, E. L., Li, J. W., Pimentel, M. M., Galindo, A. C. (2016). Generation of continental crust in the northern part of the Borborema Province, northeastern Brazil, from Archaean to Neoproterozoic. Journal of South American Earth Sciences, 68, 68-96. https://doi.org/10.1016/j.jsames.2015.10.006

Souza, Z. S., Martin, H., Peucat, J., Jardim de Sá, E. F., Macedo, M. H. F. (2007). Calc-Alkaline Magmatism at the Archean-ProterozoicTransition: the Caico Complex Basement (NE Brazil). Journal of Petrology, 48(11), 2149‑2185. https://doi.org/10.1093/petrology/egm055

Sylvester, P. J. (1989). Post-collisional alkaline granites. Journal of Geology, 97(3), 261-280. https://doi.org/10.1086/629302

Thompson, R. N. (1982). Magmatism of the British Tertiary volcanic province. Scottish Journal of Geology, 18(1), 49-107. https://doi.org/10.1144/sjg18010049

Turner, S. P., Foden, J. D., Morrison, R. S. (1992). Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia. Lithos, 28(2), 151-179. https://doi.org/10.1016/0024-4937(92)90029-X

Vauchez, A., Neves, S., Caby, R., Corsini, M., Egydio-Silva, M., Arthaud, M., Amaro, V. (1995). The Borborema shear zone system, NE Brazil. Journal of South American Earth Sciences, 8(3-4), 247-266. https://doi.org/10.1016/0895-9811(95)00012-5

Vilalva, F. C. J., Simonetti, A., Vlach, S. R. F. (2019). Insights on the origin of the Graciosa A-type granites and syenites (Southern Brazil) from zircon U-Pb geochronology, chemistry, and Hf and O isotope compositions. Lithos, 340‑341, 20-33. https://doi.org/10.1016/j.lithos.2019.05.001

Wang, Y., Wang, J., Wang, L., Long, L., Tang, P., Liao, Z., Zhang, H., Shi, Y. (2012). The Tuerkubantao Ophiolite Mélange in Xinjiang, NW China: New Evidence for the Erqis Suture Zone. Geoscience Frontiers, 3(5), 587-602. https://doi.org/10.1016/j.gsf.2012.02.002

Watson, E. B., Harrison, T. M. (1983). Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2), 295-304. https://doi.org/10.1016/0012-821X(83)90211-X

Watson, E. B., Harrison, T. M. (2005). Zircon thermometer reveals minimum melting conditions on earliest. Earth Science, 308(5723), 841-844. https://doi.org/10.1126/science.1110873

Whalen, J. B., Currie, K. L., Chappell, B. W. (1987). A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407-419. https://doi.org/10.1007/BF00402202

Whalen, J. B., Hildebrand, R. S. (2019). Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos, 348-349, 105179. https://doi.org/10.1016/j.lithos.2019.105179

Wones, D. R. (1981). Mafic silicates as indicators of intensive variables in granitic magmas. Mining Geology, 31(168), 191‑212. https://doi.org/10.11456/shigenchishitsu1951.31.191

Yang, J. H., Wu, F. Y., Chung, S. L., Wilde, S. A., Chu, M. F. (2006). A hybrid origin for the Qianshan A-type granite, Northeast China: geochemical and Sr–Nd–Hf isotopic evidence. Lithos, 89(1-2), 89-106. https://doi.org/10.1016/j.lithos.2005.10.002

Downloads

Publicado

2020-10-27

Edição

Seção

Artigos

Como Citar

Oliveira, R. R. de, Vilalva, F. C. J. ., Alves, A., Medeiros, V. C. de, & Dalan, C. de A. (2020). O Batólito Catolé do Rocha (RN-PB): Um magmatismo granítico do tipo-A2 reduzido no Domínio Rio Piranhas-Seridó, Província Borborema, Nordeste do Brasil. Geologia USP. Série Científica, 20(3), 107-130. https://doi.org/10.11606/issn.2316-9095.v20-166190