IMPORTANCE OF BACTERIAL ENDOTOXIN (LPS) IN ENDODONTICS

A IMPORTÂNCIA DA ENDOTOXINA BACTERIANA (LPS) NA ENDODONTIA ATUAL

Mario Roberto LEONARDO¹, Raquel Assed Bezerra da SILVA², Sada ASSED³, Paulo NELSON-FILHO⁴

¹- Chairman, Department of Endodontics, School of Dentistry of Araraquara, UNESP, Araraquara, São Paulo, Brazil.
²- Graduate Student in Pediatric Dentistry, Department of Pediatric, Preventive and Social Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
³- Chairman, Discipline of Pediatric Dentistry, Department of Pediatric, Preventive and Social Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
⁴- Associate Professor, Discipline of Pediatric Dentistry, Department of Pediatric, Preventive and Social Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.

Corresponding address: Mário Roberto Leonardo - Rua Humaitá, 1680 - Araraquara - SP - Brasil - CEP – 14801-903 - Fone:16-9782-6855
e-mail: nelson@forp.usp.br

Received: March 01, 2004 - Returned for modification: April 22, 2004 - Accepted: May 12, 2004

ABSTRACT

New knowledge of the structure and biological activity of endotoxins (LPS) has revolutionized concepts concerning their mechanisms of action and forms of inactivation. Since the 1980’s, technological advances in microbiological culture and identification have shown that anaerobic microorganisms, especially Gram-negative, predominate in root canals of teeth with pulp necrosis and radiographically visible chronic periapical lesions. Gram-negative bacteria not only have different factors of virulence and generate sub-products that are toxic to apical and periapical tissues, as also contain endotoxin (LPS) on their cell wall. This is especially important because endotoxin is released during multiplication or bacterial death, causing a series of biological effects that lead to an inflammatory reaction and resorption of mineralized tissues. Thus, due to the role of endotoxin in the pathogenesis of periapical lesions, we reviewed the literature concerning the biological activity of endotoxin and the relevance of its inactivation during treatment of teeth with pulp necrosis and chronic periapical lesion.

UNITERMS: Bacterial endotoxin (LPS); Gram-negative bacteria, Calcium hydroxide.

RESUMO

O conhecimento mais aprofundado sobre a estrutura e atividade biológica das endotoxinas (LPS) revolucionou os conceitos sobre seu mecanismo de ação e formas de inativação. A partir da década de 80, os avanços tecnológicos na cultura e identificação microbiológica demonstraram que, em canais radiculares de dentes portadores de necrose pulpar e lesão periapical crônica, visível radiograficamente, predominam microrganismos anaeróbios, particularmente os gram-negativos. Como se sabe, os microrganismos gram-negativos, além de possuírem diferentes fatores de virulência e gerarem produtos e sub-produtos tóxicos aos tecidos apicais e periapicais, contêm endotoxina em sua parede celular. Esse conhecimento é particularmente importante, uma vez que a endotoxina é liberada durante a multiplicação ou morte bacteriana, exercendo uma série de efeitos biológicos relevantes, que conduzem a uma reação inflamatória e à reabsorção dos tecidos mineralizados. Tendo em vista o papel da endotoxina na patogênese das lesões periapicais, os autores realizaram uma revisão da literatura específica, abordando suas atividades biológicas e a importância de sua inativação durante o tratamento de dentes portadores de necrose pulpar e lesão periapical.

UNITERMS: Endotoxina bacteriana; Gram-negativos; Hidróxido de cálcio.

INTRODUCTION

Bacterial endotoxin (LPS) has been amply studied. In fact, interest in knowledge concerning the structure of bacterial endotoxin, its mechanism of action, and forms of inactivation in both the clinical and laboratory studies is obvious by the fact that in the past 10 years, a total of 28.100 articles have been reported on Medline (http://
 IMPORTANCE OF BACTERIAL ENDOTOXIN (LPS) IN ENDODONTICS

Raetz45 published a short review about the synthesis of system29,30,58. Tubules, but also in apical craters and the entire root canal located not only in the lumen of the root canal and dentinal especially Gram-negative4. This polymicrobial infection is composed of polysaccharides (polymerized sugars), lipids (complexes containing fatty acids) and proteins. Endotoxin is present on all Gram-negative bacteria, is composed of polysaccharides (polymerized sugars), lipids (complexes containing fatty acids) and proteins. Endotoxin can be named lipopolysaccharide (LPS), emphasizing its lipid A and classified the endotoxins as extraordinary lipids. In their cell wall33. To apical and periapical tissues. They also contain endotoxin in their cell wall15.

Endotoxin, present on all Gram-negative bacteria, is composed of polysaccharides (polymerized sugars), lipids (complexes containing fatty acids) and proteins. Endotoxin can be named lipopolysaccharide (LPS), emphasizing its chemical structure6,65. Lipid A is the region of the endotoxin molecule responsible for its toxic effects12,27,33,34,65. In 1993, Raetz46 published a short review about the synthesis of lipid A and classified the endotoxins as extraordinary lipids.

Besides the chemical structure, much has been studied about the mechanism of action of endotoxins. When free to act, endotoxins do not cause cell or tissue lesions directly, but they stimulate competent cells to release chemical mediators. Researches showed that macrophages are the main target of endotoxins. Thus, endotoxins are not intrinsically venoms. Their effects depend on the host’s response, as reported by Lewis Thomas, in The Lives of a Cell: “This oppressive uncontrolled and autodestructive behavior of the host is what makes endotoxin a venom.” Furthermore, the same author wrote: “Endotoxins are read by our tissues as the worst of news. When in contact with an endotoxin, our organism places all of its defenses at disposal with the idea to bombard, block and destroy all the tissue in the area. This appears to generate panic.”

During endodontic treatment this is particularly significant because endotoxin (LPS) is released during multiplication or bacterial death causing a series of biological effects6,33, which lead to an inflammatory reaction46 and periapical bone resorption59,67.

Even though the bacterial etiology of periapical lesions has already been proven since the classic study of Kakehashi, et al.24, few investigations have evaluated the isolated effect of LPS in contact with apical and periapical tissues8,10,32,37,43,55.

Among all animals, humans are the most sensitive to the effects of endotoxins60, which makes the knowledge of their biological effects on tissues fundamentally important. Endotoxins from vital or nonvital, whole or fragmented bacteria act on macrophages46, neutrophils33 and fibroblasts2, leading to the release of a large number of bioactive or cytokine chemical inflammatory mediators33, such as tumor necrosis factor (TNF)5,33,68, interleukin-1 (IL-1)31,33,68, IL-531, IL-831, alpha-interferon33 and prostaglandins33. Furthermore, LPS is cytotoxic30 and acts as a potent stimulator of nitric oxide production48.

LPS also activates Hageman factor (factor XII of coagulation), has a lethal effect on animals31, induces fever21, activates the complement system12,23,44, thus acting in inflammatory response reactions by increasing vascular permeability, neutrophil and macrophage chemotaxis, lysozyme and lymphokine release34, activation of the metabolic cycle of arachidonic acid23, being mitogenic for B lymphocytes33 and causing mastocyte degranulation8. In infected root canals, endotoxin can contribute to an increased release of vasoactive neurotransmitter substances in the region of the nerve endings in periapical tissues, causing pain.

According to Torabinejad, et al.42, the products of arachidonic acid metabolism and the activation of the complement system play an important role in bone resorption that is associated with periapical lesions in human teeth. Besides causing an inflammatory reaction, LPS adheres irreversibly to mineralized tissues acting as a potent stimulator of bone resorption52,67, acting on the synthesis and release of cytokines that activate osteoclasts22,23, such as IL-1 and TNF, and stimulates the release of prostaglandin-E2 that also influences osteoclasts38,64. In tissue culture, Nair, et al.36 observed stimulation of bone resorption by endotoxin, confirming the role of LPS in the pathogenesis of periapical lesions seen by others10,32,52,59,67.

Considering the discussed above, the major objective of the dental professional during treatment of root canals of permanent teeth with pulp necrosis and chronic periapical lesion should not be only bacterial death, but also the inactivation of lipid A, which is the toxic portion of endotoxin. This objective is not reached by using root canal antibacterial dressings, which only kill the bacteria remaining in the root canal system after biomechanical preparation.

Medical and dental literature have published studies that have attempted to obtain a medication or substance that inactivates bacterial endotoxin, eliminating its biologically toxic potential. Caustic soda39,39, polymyxin B41, neutrophilic enzymes35, lysozyme41, formocresol50, 1.25% chlorhexidine1,

www.ncbi.nlm.nih.gov/PubMed). In Dentistry, much research using different in vivo and in vitro methodologies has emphasized the importance of anaerobic bacteria and endotoxin in the etiology of chronic periapical lesions1,4,6,13,19,21,25,36,42,52,57,67. However, only few articles have evaluated the effect of the presence of LPS in root canals on apical and periapical tissues8,10,32,37,43,55 and some articles have reported the inactivation of LPS toxic properties after endodontic procedures both in vivo and in vitro1,4,6,23,37,42,48,49,55,61,68.

ROLE OF GRAM-NEGATIVE MICROORGANISMS AND ENDOTOXIN ON ETIOLOGY OF PERIAPICAL LESIONS

When dental pulp is exposed to the oral cavity due to caries or trauma, it is initially contaminated by predominantly aerobic and facultative microorganisms. Due mainly to the existing nutritional relationships between microorganisms together with the slow decrease of oxygen tension in root canals, a microbial shift takes place leading to a predominance of anaerobic microorganisms60. Since the 1980’s, technical advances in microbiological culture and identification have shown that anaerobic microorganisms predominate in root canals of teeth with pulp necrosis and radiographically visible chronic periapical lesion29,30,51,60, especially Gram-negative4. This polymicrobial infection is located not only in the lumen of the root canal and dentinal tubules, but also in apical craters and the entire root canal system29,30,58.

Gram-negative microorganisms have different virulence factors60 and form products and sub-products that are toxic to apical and periapical tissues. They also contain endotoxin in their cell wall15.

Endotoxin, present on all Gram-negative bacteria, is composed of polysaccharides (polymerized sugars), lipids (complexes containing fatty acids) and proteins. Endotoxin can be named lipopolysaccharide (LPS), emphasizing its chemical structure6,65. Lipid A is the region of the endotoxin molecule responsible for its toxic effects12,27,33,34,65. In 1993, Raetz46 published a short review about the synthesis of lipid A and classified the endotoxins as extraordinary lipids.

Besides the chemical structure, much has been studied about the mechanism of action of endotoxins. When free to act, endotoxins do not cause cell or tissue lesions directly, but they stimulate competent cells to release chemical mediators. Researches showed that macrophages are the main target of endotoxins. Thus, endotoxins are not intrinsically venoms. Their effects depend on the host’s response, as reported by Lewis Thomas, in The Lives of a Cell: “This oppressive uncontrolled and autodestructive behavior of the host is what makes endotoxin a venom.” Furthermore, the same author wrote: “Endotoxins are read by our tissues as the worst of news. When in contact with an endotoxin, our organism places all of its defenses at disposal with the idea to bombard, block and destroy all the tissue in the area. This appears to generate panic.”

During endodontic treatment this is particularly important because endotoxin (LPS) is released during multiplication or bacterial death causing a series of biological effects6,33, which lead to an inflammatory reaction46 and periapical bone resorption59,67.

Even though the bacterial etiology of periapical lesions has already been proven since the classic study of Kakehashi, et al.24, few investigations have evaluated the isolated effect of LPS in contact with apical and periapical tissues8,10,32,37,43,55.

Among all animals, humans are the most sensitive to the effects of endotoxins60, which makes the knowledge of their biological effects on tissues fundamentally important. Endotoxins from vital or nonvital, whole or fragmented bacteria act on macrophages46, neutrophils33 and fibroblasts2, leading to the release of a large number of bioactive or cytokine chemical inflammatory mediators33, such as tumor necrosis factor (TNF)5,33,68, interleukin-1 (IL-1)31,33,68, IL-531, IL-831, alpha-interferon33 and prostaglandins33. Furthermore, LPS is cytotoxic30 and acts as a potent stimulator of nitric oxide production48.

LPS also activates Hageman factor (factor XII of coagulation), has a lethal effect on animals31, induces fever21, activates the complement system12,23,44, thus acting in inflammatory response reactions by increasing vascular permeability, neutrophil and macrophage chemotaxis, lysozyme and lymphokine release34, activation of the metabolic cycle of arachidonic acid23, being mitogenic for B lymphocytes33 and causing mastocyte degranulation8. In infected root canals, endotoxin can contribute to an increased release of vasoactive neurotransmitter substances in the region of the nerve endings in periapical tissues, causing pain.

According to Torabinejad, et al.42, the products of arachidonic acid metabolism and the activation of the complement system play an important role in bone resorption that is associated with periapical lesions in human teeth. Besides causing an inflammatory reaction, LPS adheres irreversibly to mineralized tissues acting as a potent stimulator of bone resorption52,67, acting on the synthesis and release of cytokines that activate osteoclasts22,23, such as IL-1 and TNF, and stimulates the release of prostaglandin-E2 that also influences osteoclasts38,64. In tissue culture, Nair, et al.36 observed stimulation of bone resorption by endotoxin, confirming the role of LPS in the pathogenesis of periapical lesions seen by others8,10,32,52,59,67.

Considering the discussed above, the major objective of the dental professional during treatment of root canals of permanent teeth with pulp necrosis and chronic periapical lesion should not be only bacterial death, but also the inactivation of lipid A, which is the toxic portion of endotoxin. This objective is not reached by using root canal antibacterial dressings, which only kill the bacteria remaining in the root canal system after biomechanical preparation.

Medical and dental literature have published studies that have attempted to obtain a medication or substance that inactivates bacterial endotoxin, eliminating its biologically toxic potential. Caustic soda39, polymyxin B41, neutrophilic enzymes35, lysozyme41, formocresol50, 1.25% chlorhexidine1,
and sodium hypochlorite have been tested, with no significant results. Many of these products present inherent limitations due to their high toxicity causing damaging effects when in contact with vital tissues. Thus, their routine clinical use is limited. The action of laser on periapical bacterial biofilm has also been tested, however, its use is limited by the fact that there is no free access to the sites where the endotoxin is present, the root canal system of infected teeth, except when apical surgery is performed.

ROLE OF CALCIUM HYDROXIDE IN THE INACTIVATION OF BACTERIAL ENDOOTOXIN

The first reference to the introduction of calcium hydroxide in dentistry was in 1838. However, its clinical use progressed only after the studies by Hermann in 1920. Calcium hydroxide, which has a highly alkaline pH, has been used in numerous different clinical situations, i.e., direct pulp protection, pulpotomy in permanent or deciduous teeth, root canal dressing in the treatment of permanent teeth with incomplete rhizogenesis, filling sealer in root canals, root perforations, dental resorptions, and antiseptic intracanal dressing. This ample use has been attributed to its antibacterial activity, biocompatibility, hygroscopic property, ability to reduce periapical exudate, and its capacity to induce mineralization and to dissolve necrotic tissue remnants after biomechanical preparation that can act as bacterial substrate leading to the stimulation of apical and periapical repair of teeth with chronic lesions.

Currently, one of the concerns of Endodontics is the treatment of teeth with pulp necrosis and periapical lesion because treatment failure is higher than in cases without periapical lesion. In teeth with chronic periapical lesion, there is a greater prevalence of Gram-negative anaerobic bacteria disseminated throughout the root canal system (dentin tubules, apical craters and cementum lacunae), including apical bacterial biofilm. Because these areas are not reached by instrumentation, the use of an root canal dressing is recommended to aid in the elimination of these bacteria and by instrumentation, the use of a root canal dressing is indicated calcium hydroxide as not only the medicament most indicated, but fundamentally the only one currently capable of inactivating the endotoxin in vivo.

More recently, Tanomaru, et al. evaluated the effect of biomechanical preparation using different irrigating solutions and a calcium hydroxide-based root canal dressing in dog teeth containing endotoxin. Biomechanical preparation with only irrigating solutions did not inactivate the endotoxin, however, the same treatment associated with the use of the calcium hydroxide root canal dressing (Calen®) was effective in the inactivation of the toxic effects of this endotoxin. With the objective of evaluating the production of TNF-α, IL-1 and nitrite in cultures of human monocytes incubated with different concentrations of LPS and associated with the calcium hydroxide-based paste (Calen®) or pure calcium hydroxide, Zucolotto showed that calcium hydroxide was capable of inactivating LPS.

Jiang, et al. also evaluated the direct effects of LPS on osteoclastogenesis and the capacity of calcium hydroxide to inhibit the formation of osteoclasts stimulated by endotoxin. They reported that calcium hydroxide significantly reduced osteoclast differentiation.

This new knowledge has revolutionized concepts about root canal dressings, indicating calcium hydroxide as not only the medicament most indicated, but fundamentally the only one currently capable of inactivating the endotoxin present in the root canal system of teeth with pulp necrosis and chronic periapical lesion.

CONCLUSIONS

- Bacterial endotoxin (LPS), which is a component of Gram-negative cell wall, is present in all teeth with pulp necrosis and radiographically visible chronic periapical lesion. It plays fundamental role in the genesis and maintenance of periapical lesions due to the induction of inflammation and bone resorption;
- Calcium hydroxide inactivates the toxic effects of bacterial endotoxin, in vitro and in vivo, and is currently the only clinically effective medicament for inactivation of endotoxin.
REFERENCES

54- Silva LAB. Rizogênese Incompleta - Efeitos de diferentes pastas à base de hidróxido de cálcio na complementação radicular e na reparação periapical em dentes de cães - estudo histológico. Araraquara; 1988 [Dissertação de Mestrado. Faculdade de Odontologia da Universidade Estadual Paulista]

58- Soares JA. Avaliação microbiológica, histopatológica e histomicrobiológica de dentes de cães com reação periapical crônica induzida, após preparo biomecânico automizado e aplicação de curativos de demora à base de hidróxido de cálcio. Araraquara; 2003. [Tese de Doutorado - Faculdade de Odontologia da Universidade Estadual Paulista]

68- Zuccolotto CEBG. Detecção de TNF-α, IL-1 e Nitrito produzidos em cultura de monócitos expostos à endotoxina (LPS), associada ou não ao hidróxido de cálcio. Ribeirão Preto; 2003. [Dissertação de Mestrado da Faculdade de Odontologia da Universidade de São Paulo.]