Relevância diagnóstica dos Gráficos de Recorrência na caracterização de Saúde, Doença ou Morte, em humanos

  • Moacir Fernandes de Godoy Medical School – FAMERP / Transdisciplinary Nucleus for the Study of Chaos and Complexity – NUTECC
  • Michele Lima Gregório Medical School -FAMERP
Palavras-chave: Sistema Nervoso Autônomo, Controle da Frequência Cardíaca, Variabilidade da Frequência Cardíaca, Saúde; Doença, Morte, Gráficos de Recorrência

Resumo

Gráficos de recorrência (GR) têm sido utilizados para avaliar sistemas dinâmicos complexos, sendo o corpo humano um excelente modelo. Foram analisados ​​os elementos quantitativos e qualitativos do GR na diferenciação de Saúde, Doença e Morte. Séries temporais de batimentos cardíacos normais foram coletadas em recém-nascidos saudáveis ​​(Grupo A1), crianças saudáveis ​​(Grupo A2), adultos jovens saudáveis ​​(Grupo A3), adultos saudáveis ​​de meia-idade (Grupo A4), idosos residentes em casas de repouso (Grupo B), indivíduos com doença renal crônica avançada (Grupo C) e indivíduos com morte encefálica declarada ou em estado de morte iminente (Grupo D). O grupo A3 apresentou a melhor homeostase (menor recorrência). Os grupos A1 e D apresentaram os maiores valores de recorrência. Em termos visuais qualitativos, o Grupo A3 apresentou distribuição mais difusa e uniforme, um indicativo de melhor homeostase e o Grupo D foi totalmente linear, a pior condição. Um padrão parabólico foi claramente evidenciado. Em conclusão, foi possível, utilizando a correlação de apenas duas variáveis ​​(SDNN e TT), diferenciar tanto de modo quantitativo como qualitativo os estados de Saúde, Doença e Morte usando GR.

Biografia do Autor

Moacir Fernandes de Godoy, Medical School – FAMERP / Transdisciplinary Nucleus for the Study of Chaos and Complexity – NUTECC

Department of Cardiology and Cardiovascular Surgery - São José do Rio Preto

 

 

 

Michele Lima Gregório, Medical School -FAMERP

Transdisciplinary Nucleus for the Study of Chaos and Complexity – NUTECC - São José do Rio Preto

 

Referências

1. Niklasson U, Olofsson BO, Bjerle P. Autonomic neuropathy in familial amyloidotic polyneuropathy. A clinical study based on heart rate variability. Acta Neurol Scand. 1989;79(3):182-7. DOI: https://doi.org/10.1111/j.1600-0404.1989.tb03736.x

2. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93(5):1043-65. DOI: https://doi.org/10.1161/01.CIR.93.5.1043

3. Axelrod FB, Putman D, Berlin D, Rutkowski M. Electrocardiographic measures and heart rate variability in patients with familial dysautonomia. Cardiology. 1997;88(2):133-40. DOI: https://doi.org/10.1159/000177319

4. Alonso A, Huang X, Mosley TH, Heiss G, Chen H. Heart rate variability and the risk of Parkinson disease: the atherosclerosis risk in communities study. Ann Neurol. 2015;77(5):877-83. DOI: https://doi.org/10.1002/ana.24393

5. Ogliari G, Mahinrad S, Stott DJ, Jukema JW, Mooijaart SP, Macfarlane PW, et al. Resting heart rate, heart rate variability and functional decline in old age. CMAJ. 2015;187(15):E442-9. DOI: https://doi.org/10.1503/cmaj.150462

6. Li HR, Lu TM, Cheng HM, Lu DY, Chiou CW, Chuang SY, et al. Additive value of heart rate variability in predicting obstructive coronary artery disease Beyond Framingham risk. Circ J. 2016;80(2):494-501. DOI: https://doi.org/10.1253/circj.CJ-15-0588

7. Alvares GA, Quintana DS, Hickie IB, Guastella AJ. Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: a systematic review and meta-analysis. J Psychiatry Neurosci. 2016;41(2):89-104. DOI: https://doi.org/10.1503/jpn.140217

8. Vanderlei LCM, Pastre CM, Hoshi RA, Carvalho TD, Godoy MF. Basic notions of heart rate variability and its clinical applicability. Rev Bras Cir Cardiovasc. 2009;24(2):205-17. DOI: http://dx.doi.org/10.1590/S0102-76382009000200018

9. Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol. 2014;5:1040. DOI: https://doi.org/10.3389/fpsyg.2014.01040

10. Eckmann JP, Kamphorst SO, Ruelle D. Recurrence plots of dynamical systems. Europhys Lett. 1987;4(9):973-7.

11. Nayak K, Bit A, Dey A, Mohapatra B, Pal K. A review on the nonlinear dynamical system analysis of electrocardiogram signal. J Healthcare Engineering. 2018. DOI: https://doi.org/10.1155/2018/6920420

12. Marwan N, Wessel N, Meyerfeldt U, Schirdewan A, Kurths J. Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;66(2 Pt 2):026702. DOI: https://doi.org/10.1103/PhysRevE.66.026702

13. Tsuji H, Venditti Jr FJ, Manders ES, Evans JC, Larson MG, Feldman CL, et al. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation. 1994;90(2):878-83. DOI: https://doi.org/10.1161/01.CIR.90.2.878

14. Massin M, von Bernuth G. Normal ranges of heart rate variability during infancy and childhood. Pediatr Cardiol. 1997;18(4):297-302. DOI: https://doi.org/10.1007/s002469900178

15. Nunan D, Sandercock GRH, Brodie DA. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin Electrophysiol. 2010;33:1407-17. DOI: https://doi.org/10.1111/j.1540-8159.2010.02841.x

16. O’Neal WT, Chen LY, Nazarian S, Soliman EZ. Reference ranges for short-term heart rate variability measures in individuals free of cardiovascular disease: The Multi-Ethnic Study of Atherosclerosis (MESA). J Electrocardiol. 2016;49(5):686-90.

17. Gamelin FX, Berthoin S, Bosquet L. Validity of the polar S810 heart rate monitor to measure RR intervals at rest. Med Sci Sports Exerc. 2006;3895):887-93. DOI: https://doi.org/10.1249/01.mss.0000218135.79476.9c

18. Quintana DS, Heathers JAJ, Kemp AH. On the validity of using the Polar RS800 heart rate monitor for heart rate variability research. Eur J Appl Physiol. 2012;112(12):4179-80. DOI: https://doi.org/10.1007/s00421-012-2453-2

19. Santos L, Barroso JJ, Macau EE, Godoy MF. Application of an autonomic adaptative filter for Heart Rate Variability analysis. Med Eng Phys. 2013;35(12):1778-85. DOI: https://doi.org/10.1016/j.medengphy.2013.07.009

20. Iwanski JS, Bradley E. Recurrence plots of experimental data: To embed or not to embed? Chaos. 1998;8(4):861-71. DOI: https://doi.org/10.1063/1.166372

21. Marwan N, Romano MC, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Physics Reports. 2007;438(5-6):237-329. DOI: https://doi.org/10.1016/j.physrep.2006.11.001

22. 22. Aceves-Fernandez WMA, Pedraza-Ortega JC, Sotomayor-Olmedo A, Ramos-Arreguín JM, Vargas-Soto JE, Tovar-Arriaga S. Analysis of Key Features of Non-Linear Behavior Using Recurrence Plots. Case study: Urban Pollution at Mexico City. J Environmental Protection 2012;3(9A):1147-60. DOI: https://doi.org/10.4236/jep.2012.329133

23. Hillebrand S, Gast KB, Mutsert R, Swenne CA, Jukema JW, Middeldorp S, et al. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: meta-analysis and doseresponse
meta-regression. Europace. 2013;15(5):742-9. DOI: https://doi.org/10.1093/europace/eus341

24. Wessel N, Marwan N, Meyerfeldt U, Schirdewan A, Kurths J. Recurrence Quantification Analysis to Characterise the Heart Rate Variability Before the Onset of Ventricular Tachycardia. ISMDA. 2001;2199:295-301. DOI: https://doi.org/10.1007/3-540-45497-7_45

25. Santos L, Barroso JJ, Godoy MF, Macau EEN, Freitas US. Recurrence quantification analysis as a tool for discrimination among different dynamics classes: the heart rate variability associated to different age groups. In: Marwan N, Riley M, Giuliani A, Webber Jr. C. Translational recurrences. Springer Proceedings in Mathematics & Statistics, vol 103. Springer, Cham, 2014.

26. Trunkvalterova Z, Javorka M, Tonhajzerova I, Javorkova J, Javorka K. Recurrence quantification analysis of heart rate dynamics in young patients with Diabetes Mellitus. In: Jarm T, Kramar P, Zupanic A. 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing. IFMBE Proceedings, vol 16. Springer, Berlin, Heidelberg, 2007.

27. Takakura IT, Hoshi RA, Santos MA, Pivatelli FC, Nóbrega JH2, Guedes DL, et al. Recurrence Plots: a New Tool for Quantification of Cardiac Autonomic Nervous System Recovery after Transplant. Braz J Cardiovasc Surg. 2017;32(4):245-52. DOI: https://doi.org/10.21470/1678-9741-2016-0035

28. 28. Sacha J. Why should one normalize heart rate variability with respect to average heart rate. Front Physiol. 2013;4:306. DOI: https://doi.org/10.3389/fphys.2013.00306
Publicado
2019-05-06
Seção
Artigos Originais