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Deep Reinforcement Learning Algorithms for Ship
Navigation in Restricted Waters

Jonathas Marcelo Pereira Figueiredo, Rodrigo Pereira Abou Rejaili

Abstract – Reinforcement Learning has not been fully explored for the automated
control of ships maneuvering movements in restricted waters. Nevertheless, more
robust and efficient control can be achieved with such algorithms. This paper presents
the use of Deep Q Network and Deep Deterministic Policy Gradient methods with
a numerical simulator for ship maneuvers to develop control laws. Both methods
proved to be efficient in navigational control through a channel. A comparison of
response and control behavior resulting from each of the methods is presented.
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1 Introduction
Automation is being used more frequently to augment the efficiency of various systems and
processes. One of its objectives is to reduce or eliminate human intervention completely in critical
processes where errors are not tolerated. The navigation control for means of transportation is
an example where the automation is intended to reduce accidents caused by human influence
on piloting and control.

Recently, Artificial Neural Networks (ANNs) and other Machine Learning methods have
presented good results in automation of those systems. Cars, drones and helicopters are some
examples where those methods have been successful (GERLA ; et al., 2014), (CUTLER; HOW,
2015). On the other hand, there are still some problems where definite automation solutions
have not been entirely developed and applied, such as the ship navigation control in restricted
waters.

Nowadays, such tasks are done by a ship commander who is specialized in this kind of
navigation. The ship control is based on his/her knowledge of the environmental/meteorological
conditions and experience in berthing and transport in the port region, thus demanding
experienced professionals, specifically for each region.

Nevertheless, this process still presents human risks which are the recurrent cause of maritime
accidents (HETHERINGTON; FLIN; MEARNS, 2006). Thus, the automation of such processes
is an alternative to reduce the risks associated with the maneuvering process in restricted waters.
This subject is still insufficiently explored, being a pertinent research subject for the nautical
sector (AHMED; HASEGAWA, 2014).
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1.1 State of the art
Neural Networks have been applied to transport systems in general since the 1990s, as in
the work of (DOUGHERTY, 1995). Some control systems have already used Reinforcement
Learning (RL) methods successfully, and it has been demonstrated how some adaptations are
viable to conceive controllers using RL (HAFNER; RIEDMILLER, 2011). Nevertheless, their
application in the automation of ship maneuvering is still scarcely explored in scientific literature
(AMENDOLA, 2018). One exception is the ANN-based controller for ship berthing assuming
known navigation trajectories (AHMED; HASEGAWA, 2014).

The use of Reinforcement Learning algorithms for those tasks has only begun in the last
decades. One of the first relevant results found in the literature is an experiment using an
artificial neuron actor-critic agent and a simulation of the ship navigating through a channel
using sensors that measure the course, the angle between the course and the closest group of
buoys, and the distance to this group (STAMENKOVICH, 1992). A comparison between the
application of SARSA and Q-learning algorithms with a discrete state model to control the attack
angle of the ship, in navigation on restricted waters with constant speed and small obstacles
(LACKI, 2008). More recently, Q-learning (on-line) using discrete states was compared with
the Least Squares Policy Iteration (LSPI) for continuous states using function approximators
(off-line) (RAK; GIERUSZ, 2012). In this study, the authors sought to generate the navigation
trajectory using RL, from a certain configuration of the channel (obstacle placement) that had
a final position as goal. A RL strategy was proposed using Fitted Q-Iteration with batchs of
simulated experience generated with the Tanque de Provas Numérico (TPN) simulator, through
discrete control actions and using variable speed, aiming to follow a guideline in a channel
(AMENDOLA, 2018). The obtained results, however, were not satisfactory and the ship had
oscillatory movements around the guideline following the navigation policy learned with the
algorithm.

1.2 Objectives
This paper aims to apply ANNs together with RL algorithms, using the TPN maneuver simulator
(FILHO; ZIMBRES; TANNURI, 2014) to develop a steering and propulsion control system for
a ship. The performance of such algorithms is then evaluated based on its ability to navigate a
ship following a specific trajectory.

2 Methods
This work proposes the comparison of two trajectory controllers learned with RL models using
two methods: Deep Q Network (DQN) (MNIH ; et al., 2015) and Deep Deterministic Policy
Gradient (DDPG) (LILLICRAP ; et al., 2015). Both methods are briefly explained in the
following sections.

2.1 Deep Q Network
Deep Q Network is an architecture originally proposed to learn how to play 49 classical Atari
2600 games, using a state observation from the agent solely through the game visualization
(pixels from the game screen). For such, the authors approximate the action value function
(Q) using a Convolutional Neural Network (CNN) that receives the state observation as the
input and returns the action-values as outputs. The authors also proposed a training routine
using experience replay, i.e. using random experimental transition samples to train the CNN,
eliminating the correlation in the sequence of observations (which affects the convergence of



MECATRONE Vol. 3, no 1 (2018) Artigo 2, pág. 3

the CNN) and smoothing the changes in the data distribution. Therefore, during training,
the updates of the Q-learning are made with samples (or minibatches) of experimental tuples
(s, a, r, s′), picked randomly from the samples stored in U(D) (replay). The weights (θ) of the Q
network are updated with the following loss function (for the i-th step):

Li(θi) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θi)

)2
]
; (1)

where:

• θi are the Q Network parameters on the i-th step;

• θ−i are the parameters of the ANN used to compute the target - maxa′ Q(s′, a′; θ−i ) - on
the i-th step.

The ANN is trained using Adam (KINGMA; BA, 2014). The target network parameters (θ−i )
are only updated with the Q Network parameters (θi) each C steps, remaining constant between
individual updates, what the authors call Hard Target Model Update. Another option, the
Soft Target Model Update, updates the parameters at every step of the algorithm, through
a weighted sum of the old model and the new one following the next equation (C defines the
weights of the update):

θ−i = C × θ−i + (1− C)× θi. (2)
Even though DQN has good results in high dimensional systems, its action space is discrete.
Many interest tasks, especially control ones (including the one analyzed in this paper), have a
continuous action space. If the action space is discretized too finely, the action space becomes
excessively large and the problem complexity rises, hindering the method convergence.

2.2 Deep Deterministic Policy Gradient
The Deep Deterministic Policy Gradient (DDPG) method is usually applied to environments
where the action space is continuous, as the rudder and propeller action control in navigation.
Such method is based on the actor-critic architecture, which is used to represent the policy
function independently from the value function. The policy function structure is called actor and
the value function structure, critic. The actor produces an action, given the current environment
state, and the critic produces a TD (Temporal Differences) error signal, given the state and
resulting reward. The critic output boosts both the actor and critic learning.

In the DDPG, the policy algorithm used is a = µθ(st|θµ). This means that instead of using
πθ(a|s) = P (a|s, θ) as in the stochastic cases, a deterministic policy is chosen. This way the
gradient is calculated only over the action space, which requires a smaller amount of samples
than in the stochastic case. Nonetheless, a deterministic policy does not explore entirely the
states space, thus, to overcome this limitation, a noise process is added (Nt). The policy then
becomes the following:

a = µθ(st|θµ) +Nt. (3)
A critic is used to evaluate the policy estimated by the actor using the TD error:

yi = rt+1 + γQ(st+1, at+1)−Q(st, at). (4)

As in the DQN method, experience replay is used to avoid correlations in the observation
sequence.

Updating directly the actor and critic network weights with the gradients from the TD
error signal causes instability, hindering convergence and learning itself. Target networks are
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then used to generate the targets for the TD error calculation, which regularizes the learning
algorithm and increases the stability of the solution, similarly to DQN. The TD target and
critic’s loss function are the following:

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′)|θQ′), (5)

L = 1
N

∑
i

(yi −Q(si, ai|θQ)2). (6)

In the last equation, it is used a minibatch of size N sampled from the replay buffer, i being
the sample index. The target for the TD error, yi, is calculated from the sum of the immediate
reward and the outputs of the actor-target and critic-target networks, having weights θµ′ and
θQ

′ respectively. Then, the critical output can be computed as Q(si, ai|θQ)
The interest of the DDPG algorithm for this work lies in the fact that it can be used to

construct a policy of continuous decision, which can be used for the construction of a law of
control of propulsion and rudder.

3 Simulation
The simulations made in this work have used two different simulators in order to train the RL
agent to accomplish the navigation task.

The first one is the Simple Navigation Simulator (SNS), developed in the scope of this
work, using a 3DOF dynamics and 5-Order Runge-Kutta Integrator, built using the dynamics
described in (TANNURI, 2002) and (FOSSEN, 2011). This simulator is based on OpenAI Gym
(BROCKMAN ; et al., 2016) environment, it is now a open-source available simulator under the
name ShipAI (PEREIRA; REJAILI, 2018).

The second simulator used is the commercial software developed by the TPN group. The
TPN simulator is the biggest ship maneuver simulator in Brazil. It can be summarized as a
4-order Runge-Kutta integration system, which integrates a set of 6 differential equations that
govern the dynamics of the ship in its 6 DOF.

In the scope of this work, the ship was simulated in channel conditions, in the absence of
wind, waves and current, and with navigation and control forces defined only by propeller and
rudder actions.

For both simulators, the input parameters are the rudder and propulsion control forces. They
have the vector form of AV = [Al, Ap], where Al is the dimensionless rudder command and Ap
the dimensionless propulsion command, such that Al ∈ [−1, 1] e Ap ∈ [0, 1]. These parameters
have a direct proportional relation with the rudder angle and the propulsion, such that:

Ap ∈ [0, 1]→ Tp ∈ [Tmin
p , Tmax

p ],
Al ∈ [−1, 1]→ φL ∈ [φmin

L , φmax
L ],

(7)

where Tp refers to the propulsion force and φ refers to the rudder angle.
The output of both simulators are the global positioning and velocity, described by (X, Y, θ, vx, vy, θ̇),

where X, and Y refers to the global axis-positioning, θ refers to the attack angle, vx, vy, θ̇ are
respectively the velocity in X, Y and the angular velocity.
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4 Proposed Solution
4.1 Learning Strategy
The SNS simulator was built due to the need for an appropriate fast simulator to create a first
learning of the RL agent, then the TPN simulator was used to perform a transfer learning
step. The transfer learning step was made using a Starting-Point Method (SPM) (TORREY;
SHAVLIK, 2010), i.e. using the model learned with the SNS as the starting point for the TPN
simulator training. This process was used for both DQN and DDPG agents.

Figure 1 – Schematics of the learning procedure
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4.2 RL structure
4.2.1 Navigation Task

The main purpose of the navigation task was defined as follows:
Use the rudder and propulsion controls to perform a defined linear navigation

path along a channel.
The navigation trajectory was defined as the central mid-line of the navigation channel.

The channel’s configurations were inspired by the Suape channel, northeast of Brazil, which is
straight, 5km long and 300m wide.

4.2.2 States

The states chosen for the application of RL in the task of the ship were as follows:

s = (d, θ, vx, vy, θ̇), (8)

where d is the distance from the center of mass of the ship to the guideline; θ is the angle
between the longitudinal axis of the ship and the guideline; vx is the horizontal speed of the ship
in its center of mass (in the direction of the guideline); vy is the vertical speed of the ship in its
center of mass (perpendicular to the guideline); θ̇ is the angular velocity of the ship. Figure 2
shows these states in detail. Initial states were restricted to plausible values for ship entrance
on a channel, and to yield convergence of the algorithm:
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d0 ∈ [0, 30] m,

θ0 ∈
[
− π

15 ,
π

15

]
rad,

vx0 ∈ [1, 2] m/s,
vy0 ∈ [−0.4, 0.4] m/s,
θ̇0 = 0 rad/s.

(9)

Figure 2 – Ship States
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4.2.3 Control Actions

The control actions consist on the dimensionless rudder angle and propeller rotation, as described
on the section 3. For the DQN, the actions were discretized on 21 rudder angles and 3 propeller
rotations:

SNS :ADQN
l ∈ {−1,−0.9,−0.8, ..., 0.9, 1},

TPN :ADQN
l ∈ {−1,−0.9,−0.8, ..., 0.9, 1}/3,

ADQN
p ∈ {0, 0.1, 0.2}.

(10)

For the DDPG, the actions are continuous, but they were limited as follows:

ADDPG
l ∈ [−1/3, 1/3],

SNS :ADDPG
p ∈ [0, 0.2],

TPN :ADDPG
p ∈ [0, 0.24].

(11)

The heuristic of the control action limits was chosen after being proved sufficient to this
paper’s objective on preliminary tests on both SNS and TPN simulators. It also follows practical
knowledge from actual pilots.

4.2.4 Reward Definition

The reward was designed to punish the ship’s deviation from the guideline and the speed
setpoint, with a small tolerance:

r(s) = ktol − kd ×
|d|
dmax

− kθ ×
|θ|
θmax

− kvx ×
|vx − vsp|
vxmax

− kvy ×
|vy|
vymax

− kθ̇ ×
|θ̇|
θ̇max

, (12)

where ktol = 1 is the tolerance and defines the maximum deviation the agent can have still
earning a positive reward; {kd, kθ, kvx , kvy , kθ̇} = {8, 8, 1, 1, 1} are the weighted adjusts given
for each setpoint deviation; vsp = 2 is the speed setpoint; {dmax, θmax, vxmax , vymax , θ̇max} =
{150 m, π/2 rad, 2 m/s, 4 m/s, π/9 rad/s} are the maximum state values admitted.
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4.3 Hyperparameters
The hyperparameters used are shown in the table below:

Table 1 – Methods settings

Methods DQN with experience replay
and target network

DDPG: Actor-critic, experience replay and
target network

ANN’s
architecture

Feedforward, Input: states,
4 layers: [256,128,64,33]
neurons, ReLU activation on
hidden layers, linear on
output, Output: action values,
Optimization: Adam, Learning
rate 1e−3

Actor: feedforward, Input: states, 3 layers:
[400,300,2] neurons, ReLU activation on
hidden layers, softsign on output, Output:
action, Optimization: Adam, Learning
rate 1e−4

Critic: feedforward, Input: actions, states,
3 layers: [400,300,1] neurons, ReLU activation
on hidden layers, linear on output, Output:
boolean (dimension = actions), Optimization:
Adam, Learning rate 1e−3

Training

Steps: 400000, γ = 0.99
Policy: ε-greedy, ε linear
annealed from 1 to 0.1,
Experience replay memory:
20000 transitions, Hard Target
Model Update: C = 1000

Steps: 600000, γ = 0.99, Stochastic process:
Ornstein-Uhlenbeck (θ = 0.3, µ = 0, σ = 0.3),
Experience replay memory: 20000 transitions
Soft Target Model Update: C = 1e−2

Transfer
Learning

SPM with 50000 steps, ε linear
annealed from 0.1 to 0.01

SPM with 100000 steps, parameters equal
to training

5 Results
To evaluate the performance of both methods, two test scenarios were proposed. The first one
consists on 100 episodes with random starting states on the entrance of the channel, as shown
on equation 9. The objective is to evaluate the survival of navigation, i.e. the absence of collision
with the channel borders during episodes. Furthermore, one can verify generally the distance
(d→ 0) and velocity(vx → 2 m/s) convergence. For the second scenario, 10 episodes were ran in
the TPN simulator with defined initial states - si = [di, θi, vxi, vyi, θ̇i], where:

di = 30 m, θ = k

10 ·
π

15 rad (k = 0, 1, 2, ..., 9),

vai = 1.5 m/s, vxi = vai · cos(θ), vyi = vai · sin(θ), θ̇i = 0.
(13)

The objective of such experiment is to observe the states evolution for a gradually increasing
initial angle, thus evaluating the controller performance. Convergence and rudder/propeller
commands are then analyzed.

5.1 DQN
The DQN method results in a policy that is insufficient to control the speed and direction of the
ship, presenting distance oscillations and velocities far from the setpoint. The first test scenario
presented no collision, but the convergence to the distance is oscillatory with d < 15 m. The
speed did not converge to the setpoint. The second scenario results are shown on figure 3.
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Figure 3 – States evolution with DQN after Transfer Learning, second scenario

5.2 DDPG
The DDPG method performed the task with good results, the ship followed the line with almost
no oscillations, and the distance from the guideline tends to zero as we can see from the results
below. The first scenario had no collisions and both distance and speed converged. The velocity
reaches 90% of its setpoint around t = 1380 s for all cases. Figure 4 shows results for the second
scenario.

Figure 4 – States evolution with DDPG after Transfer Learning, second scenario
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5.3 Control performance
One cannot evaluate the 10% settling time on DQN control, once it does not reach the 10%
margin. However, for all scenario 2 tests, its rise time is around 1000 s. Comparing with DDPG,
which has a rise time between 500 and 1200s, DQN has a smaller variance on this value. DDPG’s
best settling time for the distance is around 250 s (k = 0), while the worst is almost 1100 s
(k = 9). The velocity settling time is around 1400 s for all k.

Still on scenario 2, both methods presented oscillating rudder actions, and while DQN also
oscillated the thrust, DDPG maintained it almost constant.

6 Conclusion
In spite of fulfilling its objectives, the DDPG method presents some limitations for practical
applications that have to be considered before real-life implementation, such as: the evaluation
of system robustness response in situations not covered by the policy; the energy consumption
analysis related to the resulting control law and the feasibility of implementation navigation
given oscillating navigation patterns in the trajectory.

Some options can be explored to improve the control policy proposed in this paper such as:
the inclusion of an incremental action policy for rudder and propulsion actions; the inclusion of a
punitive factor for costly command actions (similar to LQR control techniques), the decoupling
of control actions in two separate neural networks, a more profound analysis on the influence
of the parameters on the controller performance (especially the reward weights and learning
architecture/hyperparameters).
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