Diel activity of the tadpoles of *Hyla hylax* (Anura: Hylidae) at Boracéia, Southeastern Brazil

Joáime Bertoluci

Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.

Received: 18.06.2001
Accepted: 22.09.2001

Behavioral ecological data on anuran larvae are critical to conservation practices because success of the larval phase strongly influences adult recruitment; anuran mortality is typically highest during the tadpole stage (Heyer, 1975, 1979; Crump, 1982). The larvae sometimes show ecological adaptations related to predation avoidance (Wassersug, 1971; Heyer et al., 1975), such as schooling behavior (Wild, 1996), and increased feeding and thermoregulation efficiency (Mullaly, 1953; De Vlamring and Bury, 1970; Beiswenger, 1975, 1977). Data on tadpole diel cycles are rare and derived mainly from laboratory observations on phototaxis. Usually, tadpoles are diurnal in warm ponds and nocturnal in cold streams (Duellman and Trueb, 1994), but Wild (1996) demonstrated that several Amazonian tadpoles are nocturnal in ponds. There are no data on Atlantic rainforest species. Herein, I present data on the diel activity of *Hyla hylax* tadpoles and their potential aquatic predators. These observations are based on diurnal and nocturnal samples taken in a forest stream of Boracéia, southeastern Brazil. *Hyla hylax* is a medium-sized treefrog (10 males, 55–62 mm; 2 females, 60–63.4 mm SVL) included in the *H. cirrhosa* Group that inhabits the Atlantic rainforest of southeastern Brazil (Heyer, 1985; Heyer et al. 1990). Adult males call at night (from the ground, bushes, bromeliad tubes at variable height, or rock crevices near forest streams (Heyer et al., 1990); pers. obs.). At Boracéia the breeding season of this species lasts from August to February (Bertoluci and Rodrigues, 2002). The reproductive mode of *H. hylax* is unknown, but tadpoles are easily found in several small forest streams in the study site throughout the year (Bertoluci, 1997). The species is known to occur in several small forest streams in the study site throughout the year (Bertoluci, 1997). The species is known to occur in several small forest streams in the study site throughout the year (Bertoluci, 1997).

Field work was carried out at Boracéia Biological Station, a 16,450-ha Atlantic rainforest reserve in southeastern Brazil (31°38'S, 45°52'W). Boracéia is situated within the Tropical Atlantic Morphoclimatic Domain (AB Sáuber, 1977) at about 900 m above sea level (see Heyer et al., 1990 for a map). Descriptions of several aspects of the local vegetation can be found in Travassos and Camargo (1958), Heyer et al. (1990), Wilms (1995) and Wilms et al. (1996). The average annual rainfall between 1973 and 1994 was 2024 mm and the mean temperature for the same period was 17.9°C (DAEE, 1994).

The anuran fauna of Boracéia is highly diverse and comprises 66 species belonging to the families Brachycephalidae (1 species), Bufonidae (3), Centrolenidae (2), Hylidae (29), Leptodactylidae (30), and Microhylidae (1) (Heyer et al., 1990; Bertoluci, 1997). By the late 1970s, several population declines and local extinctions were detected at Boracéia (Heyer et al., 1988, 1990); the status of the fauna was updated by Bertoluci and Heyer (1995) and Bertoluci (1997).

In determining the diel activity cycle of *Hyla hylax* tadpoles, I assumed that the number of tadpoles captured in a trap is directly correlated to the degree of their activity. I sampled a small stream from October 11 to October 14, 1995, using double-entry funnel-traps constructed with 2-l plastic bottles (10 cm diameter and 33 cm long). The stream consisted of interconnected puddles with rocky or sandy bottoms covered with dead leaves and sticks.
The study plot was 60 m long, 1.3 m wide, and had a maximum depth of 22 cm. Ten diurnal (0600-1800 h) and ten nocturnal (1900-0600 h) samples were obtained from the same puddles. The diurnal sampling was initiated 24 hours after the end of the previous nocturnal sampling. Unbaits traps were positioned on the stream bed because Hyla ylas tadpoles are benthic (pers. obs.). Potential tadpole predators (larval Odonata, Coleoptera, and larval and adult Heteroptera) were captured in the same traps. Voucher specimens were deposited in the herpetological collection of the Universidade Federal de Minas Gerais (UPMG). Voucher specimens of the invertebrates were deposited in the entomological collection of Museu de Zoologia da USP, in order to test if there was a difference between the numbers of tadpoles captured during each period, I performed a Student's t-test with variances separately estimated for heteroscedasticity (Zar, 1984).

A total of 29 tadpoles of Hyla ylas and 33 individual potential predators was captured in the traps at night. Only four tadpoles and no predators were captured by day. There was a significant difference between the numbers of tadpoles captured in each period (t for separate variances = 2.98, df = 10, P-value 0.013) (Figure 2).

The predominantly nocturnal activity of Hyla ylas tadpoles corroborates the observations made in C. dacus (Bokermann, 1963), A. traece (DeVlamings and Fury, 1970), and Hyla muelleri, a species also included in the Hyla circumdata Group (Bokermann and Sazima, 1973), along with several species of Hyla, Eleutherodactylus, Psychophryniscus, and Teleocharis tadpoles developing in cold streams (Duellman and Trueb, 1994). Because the water temperature in the stream varies little between day and night year-round (pers. obs.), this pattern probably is not related to an increase of feeding or thermoregulation efficiency. Instead, the nocturnal activity of these tadpoles may represent an adaptation to avoid diurnal, visually oriented predators (e.g., birds). My data reveal that tadpole predators in that streams also are more active by night. It seems likely that the tadpoles might depend on their disruptive coloration as camouflage, as suggested by Altig and Channing (1993); moreover, their highly developed tail musculature suggests that they may use swimming speed to minimize predation. Further data are needed to determine diet cycles of tadpoles in different habitats and their significance to larval survivorship.

Acknowledgements

I thank Miguel Tiedeau Rodrigues and W. Ronald Heyer for advice. Thanks also are due to Cybele Araújo, Vinicius Xavier, Tereza Orlando, and Regina C. Vincent for help in the field; Adriano Paglia helped with the statistics. Support for this work was provided by Museu de Zoologia da USP; CAPES, and FAPESP (Process 96/6701-3).

References

Figure 1 - 'Tadpoles of A. klyos from Bonito, Southeastern Brazil, in local (a) and dense (b) views.'

Figure 2 - 'Mean 3D number of tadpoles trapped in 10 hand-traps during the day (0800-1300) and during the night (2300-0600) in a forest stream at Bonito, Southeastern Brazil.'


