Chromosomal characterization of *Hyla bischoffi* and *Hyla guentheri* (Anura, Hylidae)

Simone C. Raber¹, Klélia A. Carvalho¹, Paulo C. A. Garcia², Giovanni Vinciprova³ and Shirlei M. Recco-Pimentel¹

¹ Departamento de Biologia Celular, Instituto de Biologia, Universidade Estadual de Campinas, 13083-863, Campinas, SP, Brazil. E-mail: shirlei@unicamp.br.
² Centro de Ciências da Saúde, Universidade de Mogi das Cruzes, 08780-911, Mogi das Cruzes, SP, Brazil.
³ Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, 90046-900, Porto Alegre, RS, Brazil.

Abstract

Chromosomal characterization of *Hyla bischoffi* and *Hyla guentheri* (Anura, Hylidae). *Hyla bischoffi* and *Hyla guentheri* share some morphological and call characters with the *H. pulchella* and *H. polytaenia* groups. The inclusion of these two species in one of these two groups is still controversial. This study showed that both species have 2n = 24 chromosomes, consisting of five metacentric, five submetacentric, and two subtelocentric chromosome pairs. The nucleolus organizer region (NOR) was located on the long arm of chromosome 10, which also presented a block of heterochromatin in both species. The pericentromeric region of all the chromosomes was positively C-banded. There were no conspicuous differences in the karyotypes of these two species, except for an additional heterochromatic C-band on the short arms of chromosome 6 in *H. bischoffi*. The karyotypes of these two species were very similar to those of the *H. pulchella* group and indicate that neither species can be excluded from that group.

Keywords: Anura, Hylidae, *Hyla bischoffi*, *Hyla guentheri*, chromosomes, karyotype, cytogenetics.

Introduction

The genus *Hyla* Laurenti, 1768 comprises a large number of species that are organized in groups, according to their morphological similarities. These groups are relevant to the definition of monophyletic units (Cruz and Caramaschi 1998). However, some species have characters that make it difficult to allocate them to any of the currently recognized groups. *Hyla bischoffi* Boulenger, 1887 and *H. guentheri* Boulenger, 1886 are examples of this situation.

In the original description, *H. bischoffi* was associated with *H. pulchella* Dumérril and Bibron, 1841, and the two species were even assumed to be the same in different collections (Lutz 1973). Later, both species were included in the *H. albopunctata* group by Cochran (1955), who recognized two subspecies, *H. bischoffi bischoffi* in the Brazilian states of Rio
Grande do Sul and Santa Catarina, and *Hyla bischoffi multilineata* Lutz and Lutz, 1939 in the state of São Paulo. Lutz (1973) confirmed the classification of the two subspecies and included them in the *H. polytaenia* group. Heyer *et al.* (1990) recognized a population found in Boracéia as *H. multilineata* but disregarded its status in relation to *H. b. bischoffi*. Haddad and Sazima (1992) disagreed with this classification and considered that the morphological differences between the two subspecies were insufficient to differentiate the two populations, classifying both of them as *Hyla bischoffi*.

Hyla guentheri Boulenger, 1886 was included by Lutz (1973) in the *H. polytaenia* group on the basis of its dorsal color pattern. This was also considered a relevant character by Braun and Braun (1977, 1980). However, Klappenbach and Langone (1992) and Langone (1997) considered that *H. guentheri*, with its type locality in Rio Grande do Sul, could be included in the *H. pulchella* group based on certain morphological characters. Furthermore, there is similarity between the vocalization pattern of this species and that of others of the same group (P. C. A. Garcia, unpublished data). Langone (1997) concluded that it was not possible to decide to which group this species belonged due to the lack of clear distinctions between the *H. pulchella* and *H. polytaenia* groups at that time.

Duellman *et al.* (1997) redefined the *H. pulchella* group and did not include the species *H. bischoffi* and *H. guentheri* because they lack hypertrophic forearms, a marked character of the group. Cruz and Caramaschi (1998) defined the *H. polytaenia* group as containing four species (*H. polytaenia*, *H. goiana*, *H. cipoensis*, and *H. leptolineata*) easily distinguished from *H. bischoffi* and *H. guentheri* by the absence of strips or rounded spots in the hidden parts of the thighs and inguinal region. *Hyla bischoffi* and *H. guentheri* are therefore currently not included in either of the two groups (*polytaenia* or *pulchella*), despite their apparent relatedness to both groups. Recently, morphological (Garcia 2003) and molecular analysis (Faivovich *et al.* in press) suggested that *H. bischoffi* and *H. guentheri* should be included in the *H. pulchella* group.

There is little cytogenetic data on the species associated with the *H. pulchella* and *H. polytaenia* groups. Ananias (1996) and Ananias *et al.* (2004) studied the karyotype, pattern of heterochromatin and nucleolus organizer region distribution in some species of the *H. pulchella* group. In the *H. polytaenia* group, only the karyotype of *H. polytaenia polytaenia* has been described (Rabello 1970).

In this paper, we examined the chromosomes of *H. bischoffi* and *H. guentheri* to obtain cytogenetic information that might help in the classification of these two species, particularly in defining their relationship to other groups of *Hyla*.

Material and Methods

All frogs were collected in the states of Rio Grande do Sul (RS) and Santa Catarina (SC), southern Brazil: eight specimens of *H. bischoffi* (all males) from São Francisco de Paula, six (all males) from Rancho Queimado, and eight specimens of *H. guentheri* (seven males and one female) from Terra de Areia. *Hyla bischoffi* was found in perennial ponds in open areas or, more frequently, on forest edges in mountain areas above 800 m altitude. *Hyla guentheri* was collected in temporary puddles inside swamp forest in the coastal region at about 100m altitude. *Hyla guentheri* was collected in temporary puddles inside swamp forest in the coastal region at about 100m altitude. Specimens were deposited in the ZUEC collection (“Professor Adão José Cardoso”) Museu de História Natural of the Universidade Estadual de Campinas (accession numbers 11731-11738: *H. guentheri*) and in the CFBH collection of the Departamento de Zoologia of the Universidade Estadual Paulista at Rio Claro (accession numbers CFBH 3335-3360, 3676-3683: *H. b. bischoffi*), state of São Paulo, Brazil.

The chromosomal preparations were obtained from suspensions of intestinal epithe-
showed 2n=24 chromosomes and a karyotype with six large and six small chromosomal pairs. Chromosomes 1, 2, 8, 11 and 12 metacentric; chromosomes 3, 5, 7, 9 and 10 submetacentric and chromosomes 4 and 6 were subtelocentric (Figures 1 and 3, Table 1). Chromosome 10 consistently showed a secondary constriction interstitially on the long arm in all preparations (Figure 1).

Both Hyla bischoffi and H. guentheri showed pericentromeric heterochromatin in all chromosomes and a conspicuous positive C-block on the long arm of chromosome 10, adjacent to a secondary constriction. Both species also presented a telomeric C-band that was clearly identified on the long arm of chromosome 1 (Figures 2 and 3). In addition, darkly stained heterochromatin extending over almost the entire short arm of chromosome 6 of H. bischoffi was detected (Figures 2B and 3B).
Both species of *Hyla* presented the Ag-NORs at the long arm of chromosome 10, coincident with the secondary constriction (Figures 2 and 3). Sequential staining with C-bandning and silver impregnation revealed that the NOR did not coincide with the heterochromatin but was adjacent to it.

Discussion

Diploid number of chromosomes of 2n=24 found in *H. bischoffi* and *H. guentheri* was the same as that of *H. b. multilineata* (Beçak 1968), *H. b. bischoffi* (Foresti 1972), *H. polytaenia* (Rabello 1970) and other species of the *H.*
Chromosomal characterization of Hyla bischoffi and Hyla guentheri (Anura, Hylidae)

Figure 2 - C-banded metaphases of Hyla guentheri (A) and H. b. bischoffi (B). Inset: silver-stained NOR on the long arm of chromosome pair 10. Bar = 5 mm

pulchella group (Analias 1996). Indeed, comparison of the chromosomal morphology of H. bischoffi and H. guentheri with the karyotypes of other species in the pulchella and polytaenia groups showed that they are quite similar.
Beçak (1968) classified chromosomes 1, 9, 10, 11 and 12 of *H. multilineata* (*H. b. multilineata*) specimens collected in Itapecerica da Serra, state of São Paulo, as metacentric and the remaining as submetacentric. This differed from the classification of chromosomes 2, 4, 6, 8, 9 and 10 obtained in the present paper. Comparison of our data for *H. b. bischoffi* with those of Foresti (1972) for a population of *H. bischoffi* from Rio dos Cedros, state of Santa Catarina, showed that the diploid number was the same (2n=24), but that chromosomes 2, 4, 6, 9 and 10 were classified differently by the latter author. This discrepancy is attributable to the use of a different classification criteria since the chromosomes in all of these karyotypes have the same morphology.

The number and morphology of the chromosomes in *Hyla b. bischoffi* and *H. guentheri* were also similar to those of *H. polytaenia* (Rabello 1970). However, the location of the NORs and heterochromatin in *H. polytaenia* was not studied and a more detailed comparison cannot be made. On the other hand, the karyotype of *H. b. bischoffi* differed from those of *Hyla pulchella*, *H. p. joaquinii*, *H. caingua* and *H. prasina*, species of the *pulchella* group (Ananias 1996), in chromosome number and morphology, and by the presence of a block of heterochromatin in the long arm of chromosome 10. This C-heterochromatin, which was also seen in the same chromosome pair of *H. marginata*, *H. semiguttata* and *Hyla* sp.n. (aff. *semiguttata*) (Ananias et al. 2004) and other species of the *pulchella* group (Ananias 1996), seems to be an important marker for this group.

In both species studied here, the NORs occurred at the region of the secondary constriction of the long arm of chromosome 10. An NOR-bearing chromosome 10 was also observed in *H. marginata* and *Hyla* sp.n. (aff. *semiguttata*) (Ananias et al. 2004). In the *pulchella* group, the NOR was located on chromosome pair 12 in *H. prasina* and *H. pulchella*, on chromosome pair 7 in *H. caingua* and on chromosome pair 1 in *H. p. joaquinii* (Ananias 1996). There is no information on the NOR in the group *polytaenia*. Considering that the karyotypes of *H. b. bischoffi* and *H. guentheri* are conserved and they are very closely related species, the variation in the location of the NORs among them and the species *H. prasina* and *H. pulchella* suggests that chromosomal rearrangements, such as translocations, may have occurred during the evolution and differentiation of these species. According to Schmid (1978, 1982), the NOR almost always occurs at the same chromosomal location in the karyotypes of species of the same group or in groups of related species. Exceptions to this rule indicate that

Figure 3 - Idiograms of *Hyla guentheri* (A) and *H. b. bischoffi* (B) karyotypes. Black areas denote dark C-bands, gray areas denote faint C-bands and hatched circles represent the NORs.
Chromosomal rearrangements may have contributed to the species evolution (Schmid 1978).

The C-banded chromosomes of H. bischoffi and H. guentheri revealed a small amount of heterochromatin at the pericentromeric regions. Although the distribution of heterochromatin was very similar in the two species, H. bischoffi showed a specific band on chromosome 6, which was not seen in H. guentheri or other species of the H. pulchella group (Ananias 1996). This band may serve as a possible marker for H. bischoffi species.

Specimens of H. joaquini from a population at Urubici, state of Santa Catarina (Ananias 1996), showed the same pattern of heterochromatin distribution as that of the species analysed here, especially that of H. guentheri, with a small amount of heterochromatin at the pericentromeric regions and an interstitial band on chromosome 10.

As shown above, the number and morphology of the chromosomes, the amount and distribution of heterochromatin and the presence of an interstitial band on chromosome 10 were shared by H. guentheri and H. bischoffi and all species analysed of the H. pulchella group. These findings indicate that, cytogenetically, the two species cannot be excluded from the H. pulchella group. The cytogenetic description of species in the H. polytaenia group, as recently defined by Cruz and Caramaschi (1998), may help to elucidate the relationships among the two species studied here and those two hylid groups.

Acknowledgements

The authors thank CAPES for financial support. PCAG was the recipient of a fellowship from FAPESP (Proc. 98/06087-9). The specimens were collected under a permit from the Instituto Brasileiro do Meio Ambiente e Recursos Naturais Renováveis (IBAMA n°. 002792/98-03 AC and 02001.002792/98-03 AC, licences 095/98 and 128/99 DIFAS).

References

História Natural da Serra do Japi – ecologia e preservação de uma área florestal no sudeste do Brasil. Campinas. UNICAMP/FAPESP.

