Short-term immunosuppressive therapy does not affect the density of the pre-existing bone around titanium implants placed in rabbits

Terapia imunossupressora não afeta a densidade do osso preexistente ao redor de implantes de titânio inseridos em coelhos

Poliana Mendes Duarte*
Getúlio Rocha Nogueira Filho**
Enilson Antônio Sallum**
Antonio Wilson Sallum***
Francisco Humberto Nociti Júnior**

ABSTRACT: The aim of this study was to evaluate the influence of the administration and withdrawal of cyclosporin A/nifedipine on the bone density in a lateral area adjacent to implants placed in rabbits. Two screw-type titanium implants were placed bilaterally in twenty-eight New Zealand rabbits. The animals were assigned to one of the following groups and received daily subcutaneous injections for 14 days: Groups A and C: vehicle (dimethyl sulfoxide); Groups B and D: CsA (10 mg/kg) plus nifedipine (50 mg/kg). The animals in Groups A and B were sacrificed 14 days postoperatively and, in Groups C and D, 42 days postoperatively. After sacrifice, the tibiae were removed and undecalcified sections were obtained. Bone density was obtained in a 500 μm-wide zone lateral to the implant surface. Intergroup analysis showed no significant difference (p > 0.05) in the degree of bone density between control and test groups either on day 14 or on day 42. Thus, it appears that a short-term immunosuppressive therapy may not present a negative influence on the density of the pre-existing bone around titanium implants placed in rabbits.

DESCRIPTORS: Titanium; Osseointegration; Cyclosporine; Nifedipine; Dental implants.

INTRODUCTION

The use of titanium endosseous dental implants has been described for the treatment of edentulous or partially edentulous patients in order to restore function and esthetics. However, the success of osseointegration depends on the state of the host bone and its healing capacity. Thus, some local and systemic conditions may impair bone healing or may interfere with the maintenance of osseointegration.

Organ transplantation has increased in the last decade following successful development of immunosuppressive drug regimens to reduce rejection reports. Cyclosporin A (CsA) is the most commonly used immunosuppressant agent for preventing graft rejection. It is a fungal cyclic undecapeptide, which has also shown promise in
the treatment of autoimmune disorders such as psoriasis, atopic dermatitis, rheumatoid arthritis and uveitis. Its major effect on the immune system is inhibition of T-cell action and proliferation, thereby altering the T-cell-mediated immune response. It has also been shown to affect a subset of B cells.

In addition to its effects on the immune system, CsA has also been associated with deleterious effects upon bone metabolism. Nevertheless, despite its many therapeutic uses and its efficient prevention of organ rejection, side-effects are not infrequent. Post-transplantation osteoporosis, bone formation and bone resorption are well-recognized side-effects. Moreover, CsA administration has been associated with gingival overgrowth and nephrotoxicity.

In order to control hypertension and reduce cyclosporin-induced nephrotoxicity, patients are frequently given nifedipine, a calcium-channel blocker (CCBs). The effect of CCBs appears not to be limited only to the cardiovascular system, but also to calcium metabolism. Similarly to CsA, nifedipine has demonstrated some effects on bone metabolism.

Therefore, the present study was designed to evaluate, by histological analysis, whether short-term CsA/nifedipine administration influences bone density, in a pre-existing bone area, around titanium implants placed in the tibiae of rabbits. In addition, the study also aims to investigate whether recovery is possible following administration withdrawal.

MATERIAL AND METHODS

Animals

Twenty-eight male New Zealand rabbits (3,000 to 3,500 g), aged 9 to 12 months, were used in the entire study. The animals were kept in individual cages with access to food and water ad libitum. Prior to the surgical procedures, all animals were allowed to acclimatize to the laboratory environment for a period of 7 days. The protocol was approved by the University of Campinas Institutional Animal Care and Use Committee.

Implant surgery

At the beginning of the experiment, general anesthesia was performed using intramuscular administration of ketamine (0.5 ml/kg). The tibiae skin was shaved and disinfected with iodine surgical soap. A 30 mm incision was made and the bone surface of the tibiae surgically exposed by blunt dissection. Under profuse saline solution irrigation, unicortical implant beds were drilled and two screw-shaped commercially available pure titanium implants (7.0 mm in length and 3.75 mm in diameter) were placed bilaterally until the screw thread had been completely introduced into the bone cortex. Finally, soft tissues were replaced and sutured. Postoperatively, the animals received antibiotic (Pentabiotic®, Wyeth-Whitehall Ltda., São Paulo, SP, Brazil) given as a single intramuscular injection.

Experimental design

Immediately after implant placement, the animals were randomly assigned to one of the following four treatment groups (7 animals/group) and received daily subcutaneous injections for 14 days: Groups A and C were injected with a vehicle (dimethyl sulfoxide) and groups B and D received CsA (Sandimmun®, Novartis Pharma AG, Switzerland) (10 mg/kg) plus nifedipine (Sigma, St. Louis, MO, USA) (50 mg/kg). Groups A and B were sacrificed 14 days postoperatively and Groups C and D were sacrificed 42 days postoperatively (Figure 1).

Histometric procedures

After sacrifice, the tibiae were removed and fixed in 4% neutral formalin for 48 hours. Undecalcified sections were prepared as previously described, i.e. the blocks were dehydrated by using an ascending series of ethanol (60-100%) and embedded in glycolmethacrylate (Technovit 7200; Heraeus Kulzer GmbH, Wehrheim, Germany). Subsequently, sections (20-30 μm) were obtained and stained as follows: (1) the slide-containing specimen was placed in a vessel containing Stevenel’s blue preheated to 60°C, and maintained at this temperature for 15 minutes; (2) the speci-
men was rinsed in distilled water at 60°C and air dried; (3) a small amount of alizarin red stain was placed onto the specimen surface at room temperature for 5 minutes. The specimen was then washed thoroughly in running distilled water to remove excess stain and air-dried. Bone density (BD), i.e., the proportion of mineralized matrix, in a 500 μm-wide zone lateral to the implant surface, was separately recorded for both sides of the implant (Image-Pro®; Media Cybernetics, Silver Spring, MD, USA).

Statistical analysis

The hypothesis that the CsA/nifedipine association had no influence on the bone density was tested by an intergroup analysis (Group A versus Group B and Group C versus Group D) using Mann-Whitney’s test (α = 0.05). In addition, to test the hypothesis that this immunosuppressant therapy does not influence body weight during the experimental period, the Student’s t test was used (α = 0.05).

RESULTS

Clinical observations

On day 14, all animals showed some weight loss. However, the animals that received immunosuppressive therapy demonstrated a significantly greater weight loss (–0.41 ± 0.20 kg) than the control group (–0.16 ± 0.10 kg) (p = 0.01). On day 42, after withdrawal of the immunosuppressive therapy, the control group presented a weight gain (0.27 ± 0.18 kg) and the test group still presented some weight loss (–0.04 ± 0.37 kg); however, there was no statistical difference between the groups (p = 0.07). Due to the sample variability, these data should be considered with caution.

Histometric results

Intergroup analysis did not show statistical difference (p > 0.05) between test and control groups regarding bone density either on day 14, during the CsA/nifedipine administration, or on day 42, after the withdrawal of immunosuppressive therapy. Graph 1 illustrates the results observed for all the experimental groups. Figure 2 illustrates the histological aspects observed in the test group on days 14 and 42.

DISCUSSION

High success rates have been reported for implant-supported prostheses in fully and partially edentulous patients. However, among other factors, the medical status of the patients has been associated with biological failures of dental implants. Immunosuppression is a therapeutic regimen for several diseases, including lifelong medication with drug associations such as CsA/nifedipine in order to counteract rejection of transplanted tissues. Recently, the significance of CsA on alveolar bone has received some attention. Thus, with the growth in implant demand, use of immunosuppressive therapy before or during implantation should be considered.

Since the prognosis of an implant-supported prosthesis may be influenced by the bone density...
around the implant, the present study aimed to evaluate the influence of an immunosuppressive therapy and its withdrawal on the proportion of mineralized bone (bone density) on a 500 μm-wide zone lateral to the implant inserted in rabbits. The results of the present study demonstrated that short-term administration of CsA/nifedipine may not affect the pre-existing bone adjacent to the implant surface.

Increased bone remodeling and trabecular bone loss have been observed in CsA-exposed animals. Increased osteoblastic and decreased osteoclastic activity in patients undergoing CsA treatment have also been reported. The precise mechanisms underlying the CsA effect on bone metabolism are still unknown. However, it may be suggested that CsA affects the immune system by selectively influencing the lymphokine-monokine cascade and it has been recognized that cytokines, such as interleukin-1, are among a number of products of the lymphokine-monokine cascade that affect bone metabolism. Although in vitro studies indicate that CsA inhibits bone resorption, it has been observed that, in vivo, CsA administration results in a severe high turnover osteopenic state, which is dependent on both the dose and duration of the therapy.

The subcutaneous route, used in this study, has been suggested as the route of choice to provide a more consistent cycle of CsA availability than any other route. Blood levels of CsA between 100 and 400 ng/ml have been shown to be sufficient to promote immunosuppression in humans. Likewise, in animals, blood levels between 100 and 400 ng/ml have been considered to be effective. The dosage of CsA used in the present study (10 mg/kg, S.Q.) has been shown to produce blood levels sufficient to induce immunosuppression in rodents.

The most sensitive index of systemic CsA side-effects appears to be a decrease in renal function. Calcium-channel blockers (CCB), such as nifedipine, have been successfully utilized for the control of CsA-induced toxicity as well as hypertension. A number of clinical and experimental studies have suggested that the effects of CCBs are not only limited to the cardiovascular system but might also involve skeletal calcium metabolism, due to the presence of calcium channels in bone cells. Though the mechanisms of the effects of CCBs on bone remain obscure, some explanations may be proposed. Calcium antagonists inhibit calcium intracellular influx and there is no doubt that calcium plays an essential role in the mechanism for controlling bone resorption. Osteoclast activity depends upon calcium concentration, and CCBs can lead to a rapid increase of cytosolic free calcium with effects on osteoclast morphology and a marked dose-dependent fall in the cell spread area and osteoclast bone resorption. Clinically, it has been reported that, in elderly patients treated for coronary heart disease over 2 years, nifedipine caused a temporary increase in bone mineral density.

CONCLUSION

In conclusion, the results of the present study suggest that short-term administration of CsA, associated with nifedipine, may not influence bone density in a lateral zone to the titanium implant surface inserted in rabbits. However, further studies should be considered in order to address the long-term consequences of maintenance dosage schedules of CsA/nifedipine on bone mineral metabolism around titanium implants.

ACKNOWLEDGMENT

The authors greatly appreciated the assistance of AS Technology, for supplying the implants.

REFERENCES

Recibido para publicación em 13/06/03
Enviado para reformulação em 16/07/03
Aceito para publicação em 19/08/03