Concentrações de lactato sanguíneo após teste incremental máximo em corredores com diferentes idades

Autores

  • Cecília Segabinazi Peserico Universidade Estadual de Maringá
  • Paulo Victor Mezzaroba Universidade Estadual de Maringá
  • Danilo Fernandes da Silva Universidade Estadual de Maringá
  • Ana Claudia Pelissari Kravchychyn Universidade Estadual de Maringá
  • Júlio César Camargo Alves Universidade Estadual de Maringá
  • Fabiana Andrade Machado Universidade Estadual de Maringá

DOI:

https://doi.org/10.11606/1807-5509201800010005

Palavras-chave:

Resistência Física, Ácido Láctico, Teste de Exercício, Corrida

Resumo

O objetivo deste estudo foi investigar o efeito da idade sobre a concentração pico de lactato após teste incremental máximo em corredores recreacionais. Setenta corredores foram recrutados. Os quatro grupos foram: ≤25 anos; 26-35 anos; 36-45 anos; >45 anos). Os participantes realizaram um teste incremental com início a 8 km·h-1, incrementos de 1 km·h-1 a cada três minutos até exaustão voluntária. Amostras sanguíneas foram coletadas antes e nos minutos zero, terceiro, quinto e sétimo após o teste para a determinação das concentrações de lactato. A concentração pico de lactato (LApico) foi definida para cada participante como o maior valor entre as quatro amostras coletadas após o teste. As concentrações de lactato foram influenciadas pela idade, no qual os valores de LApico dos corredores mais novos (10,8 ± 2,6 mmol·L-1) foram maiores dos que os valores dos outros corredores (8,1 ± 3,1; 7,0 ± 1,1; 6,9 ± 2,8 mmol·L-1 para os grupos com idades de 26-35, 36-45 anos e 45 anos, respectivamente). O LApico ocorreu mais frequentemente no terceiro e quinto minuto após o teste. Em conclusão, as concentrações de lactato após o teste incremental foram influenciadas pela idade, com maiores valores no grupo de corredores com idade ≤25 anos do que os outros grupos. Além disso, o LApico ocorreu mais frequentemente no terceiro e quinto minutos após o teste incremental.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Howley ET, Bassett DR Jr, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27(9):1292-301.

Midgley AW, McNaughton LR, Polman R, Marchant D. Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Med. 2007;37(12):1019-28.

Benelli P, Ditroilo M, Forte R, De Vito G, Stocchi V. Assessment of post-competition peak blood lactate in male and female master swimmers aged 40-79 years and its relationship with swimming performance. Eur J Appl Physiol. 2007;99(6):685-93.

Edvardsen E, Hem E, Anderssen SA. End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: a cross-sectional study. PloS One. 2014;9(1):e85276.

Korhonen MT, Suominen H, Mero A. Age and sex differences in blood lactate response to sprint running in elite master athletes. Can J Appl Physiol. 2005;30(6):647-65.

Marsh GD, Paterson DH, Govindasamy D, Cunningham, DA. Anaerobic power of the arms and legs of young and older men. Exp Physiol. 1999;84(3):589-97.

Hunter GR, Newcomer BR, Weinsier RL, Karapondo, DL, Larson-Meyer, DE, Joanisse, DR, et al. Age is independently related to muscle metabolic capacity in premenopausal women. J Appl Physiol. 2002;93(1):70-6.

Porter, MM, Vandervoort AA, Lexell J. Aging of human muscle: structure, function and adaptability. Scand J Med Sci Sports. 1995;5(3):129-42.

Macaluso A, De Vito G. Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol. 2004;91(4):450-72.

Reaburn P, Dascombe B. Endurance performance in master athletes. Eur Rev Aging Phys Act. 2008;5(1):31-42.

Knechtle B, Rüst CA, Knechtle P, Rosemann T. Does muscle mass affect running times in male long-distance master runners? Asian J Sports Med. 2012;3(4):247-56.

Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(3):497-504.

Siri WE. Techniques for measuring body composition. Washington DC: National Academy Press; 1961.

Machado FA, Kravchychyn AC, Peserico CS, da Silva DF, Mezzaroba PV. Incremental test design, peak ‘aerobic’ running speed and endurance performance in runners. J Sci Med Sport. 2013;16(6):577-82.

Peserico CS, Zagatto AM, Machado FA. Reliability of peak running speeds obtained from different incremental treadmill protocols. J Sports Sci. 2014;32(10):993-1000.

Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exer. 1982;14(5):377-81.

Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153-6.

Schabort EJ, Hopkins WG, Hawley JA. Reproducibility of self-paced treadmill performance of trained endurance runners. Int J Sports Med. 1998;19(1):48-51.

Currell K, Jeukendrup AE. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008;38(4):297-316.

Kuipers H, Rietjens G, Verstappen F, Schoenmakers H, Hofman G. Effects of stage duration in incremental running tests on physiological variables. Int J Sports Med. 2003;24(7):486-91.

Peserico CS, Zagatto AM, Machado FA. Evaluation of the best-designed graded exercise test to assess peak treadmill speed. Int J Sports Med. 2015;36(9)729-34. Epub 2015 Apr 14. doi: 10.1055/s-0035-1547225

Astrand PO. Experimental studies of physical working capacity in relation to sex and age. Copenhagen: Ejnar Munksgaard; 1952.

Dassonville J, Beillot J, Lessard Y, Jan J, André AM, Le Pourcelet C, et al. Blood lactate concentrations during exercise: effect of sampling site and exercise mode. J Sports Med Phys Fitness. 1998;38:(1)39-46.

Moran P, Prichard JG, Ansley L, Howatson G. The influence of blood lactate sample site on exercise prescription. J Strength Cond Res. 2012;26:563-7.

Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3-13.

Machado FA, Kravchychyn ACP, Peserico CS, da Silva DF, Mezzaroba PV. Effect of stage duration on maximal heart rate and post-exercise blood lactate concentration during incremental treadmill tests. J Sci Med Sport. 2013;16(3):276-80.

Duncan GE, Howley ET, Johnson BN. Applicability of VO2max criteria: discontinuous versus continuous protocols. Med Sci Sports Exerc. 1997;29(2):273-8.

Achten J, Jeukendrup A. Heart rate monitoring: applications and limitations. Sports Med. 2003;33(7):517-38.

Eston R. Use of ratings of perceived exertion in sports. Int J Sports Physiol Perform. 2012;7(2):175-82.

Gass GC, Rogers S, Mitchell R. Blood lactate concentration following maximum exercise in trained subjects. Br J Sports Med. 1981;15(3):172-6.

Baxter-Jones ADG, Eisenmann JC, Sherar LB. Controlling for maturation in pediatric exercise science. Pediatr Exerc Sci. 2005;17(1):18-30.

Armstrong N, McManus AM. Physiology of elite young male athletes. Med Sport Sci. 2011;56:1-22.

Izquierdo M, Hakkinen K, Anton A, et al. Maximal strength and power, endurance performance, and serum hormones in middle-aged and elderly men. Med Sci Sports Exerc. 2001;33(9):1577-87.

Mattern CO, Gutilla MJ, Bright DL, Kirby TE, Hinchcliff KW, Devor ST. Maximal lactate steady state declines during aging process. J Appl Physiol. 2003;95(6):2576-82.

Strupler M, Mueller G, Perret C. Heart rate-based lactate minimum test: a reproducible method. Br J Sports Med. 2009;43(6):432-6.

Chiba T, Ishii H, Takahashi S, Yano T. Relationship between blood lactate and hyperventilation during high-intensity constant-load exercise in heat. Biol Sport. 2011;28(3):159-63.

Downloads

Publicado

2018-12-18

Edição

Seção

Artigos

Como Citar

Concentrações de lactato sanguíneo após teste incremental máximo em corredores com diferentes idades. (2018). Revista Brasileira De Educação Física E Esporte, 32(1), 5-16. https://doi.org/10.11606/1807-5509201800010005