Low efficiency of β-alanine supplementation to increase muscle carnosine

a retrospective analysis from a 4-week trial

Autores

  • Pedro Henrique Perim Universidade de São Paulo. Escola de Educação Física e Esporte, São Paulo, SP, Brasil; Centro Universitário São Camilo, São Paulo, SP, Brasil
  • André Barroso Heibel Universidade de Brasília, Brasília, DF, Brasil
  • Guilherme Giannini Artioli Universidade de São Paulo. Escola de Educação Física e Esporte, São Paulo, SP, Brasil; Nottingham Trent University, Nottingham, Reino Unido
  • Bruno Gualano Universidade de São Paulo. Escola de Educação Física e Esporte, São Paulo, SP, Brasil
  • Bryan Saunders Universidade de São Paul. Escola de Educação Física e Esporte, São Paulo, SP, Brasil

DOI:

https://doi.org/10.11606/1807-5509202000030357

Palavras-chave:

Carnosine synthesis, Beta-Alanine incorporation, Optimization, Supplementation strategy, High-performance liquid chromatography

Resumo

Supplementation with β-alanine (BA) increases muscle carnosine content, although the amount of BA used for muscle carnosine loading has been suggested to be low. However, methodological issues may have underestimated the amount of BA used. The aim of this study was to determine the estimated amount of BA converted to muscle carnosine, using a retrospective analysis from a 4-week randomized controlled trial investigating the effects of BA supplementation on muscle carnosine content of the m. vastus lateralis. Twenty-five males (age 27±5 years, height 1.74±0.09 m, body mass 77.4±11.5 kg) were supplemented with 6.4 g·day-1 of BA (N=17) or placebo (PL; N=8) for 28 days. Pre- and postsupplementation participants provided a muscle biopsy subsequently analysed for carnosine content using HPLC. Data were analysed using mixed-models and Pearson’s correlations. Muscle carnosine content increased by +11.0±6.7 mmol·kg-1dm (P<0.0001) in BA, with no change in PL (P=0.99). The estimated amount of BA converted to muscle carnosine was 2.1±1.2% (Range: 0.5 to 4.5%) of the total dose ingested. Pearson’s correlations showed that pre-supplementation carnosine was correlated to post-supplementation carnosine in the BA group (r=0.65, r2=0.38, P=0.009), but not the absolute change in carnosine (r=-0.28, r2=0.08, P=0.28) or the amount of BA used (r=-0.31, r2=0.10, P=0.22). The estimated amount of ingested BA used for carnosine synthesis was extremely low following 4 weeks of BA supplementation at 6.4 g·day-1. Data suggest that very little of the BA ingested is used for muscle carnosine synthesis and highlights the potential for further work to optimise BA supplementation in humans.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

1. Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, et al. The absorption of orally supplied beta-alanine
and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006;30(3):279-89.
2. Baguet A, Reyngoudt H, Pottier A, Everaert I, Callens S, Achten E, et al. Carnosine loading and washout in human skeletal muscles. J Appl Physiol. 2009;106(3):837-42.
3. Derave W, Oezdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, et al. beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol. 2007;103(5):1736-43.
4. Gross M, Boesch C, Bolliger CS, Norman B, Gustafsson T, Hoppeler H, et al. Effects of beta-alanine supplementation and interval training on physiological determinants of severe exercise performance. Eur J Appl Physiol. 2014;114(2):221-34.
5. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, et al. Influence of beta-alanine supplementation on
skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32(2):225-33.
6. Saunders B, De Salles Painelli V, De Oliveira LF, Da Eira Silva V, DA Silva RP, Riani L, et al. Twenty-four Weeks of betaAlanine Supplementation on Carnosine Content, Related Genes, and Exercise. Med Sci Sports Exerc. 2017;49(5):896-906.
7. Saunders B, Elliott-Sale K, Artioli GG, Swinton PA, Dolan E, Roschel H, et al. beta-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2017;51(8):658-69.
8. Decombaz J, Beaumont M, Vuichoud J, Bouisset F, Stellingwerff T. Effect of slow-release beta-alanine tablets on
absorption kinetics and paresthesia. Amino Acids. 2012;43(1):67-76.
9. Blancquaert L, Everaert I, Derave W. Beta-alanine supplementation, muscle carnosine and exercise performance. Curr Opin Clin Nutr Metab Care. 2015;18(1):63-70.
10. Stegen S, Blancquaert L, Everaert I, Bex T, Taes Y, Calders P, et al. Meal and beta-alanine coingestion enhances muscle carnosine loading. Med Sci Sports Exerc. 2013;45(8):1478-85.
11. Abe H. Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry. 2000;65(7):757-65.
12. Jones G, Smith M, Harris R. Imidazole dipeptide content of dietary sources commonly consumed within the British diet. P Nutr Soc. 2011;70:E363.
13. Bergstrom J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest. 1975;35(7):609-16.
14. Mora L, Sentandreu MA, Toldra F. Hydrophilic chromatographic determination of carnosine, anserine, balenine, creatine, and creatinine. J Agric Food Chem. 2007;55(12):4664-9.
15. Blancquaert L, Baba SP, Kwiatkowski S, Stautemas J, Stegen S, Barbaresi S, et al. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by beta-alanine transamination. J Physiol-London. 2016;594(17):4849-63.
16. Hostrup M, Bangsbo J. Improving beta-alanine supplementation strategy to enhance exercise performance in athletes. J physiol. 2016;594(17):4701-2.
17. Blancquaert L, Everaert I, Missinne M, Baguet A, Stegen S, Volkaert A, et al. Effects of histidine and beta-alanine supplementation on human muscle carnosine storage. Med Sci Sports Exerc. 2017;49(3):602-9.
18. Bex T, Chung W, Baguet A, Stegen S, Stautemas J, Achten E, et al. Muscle carnosine loading by beta-alanine
supplementation is more pronounced in trained vs. untrained muscles. J Appl Physiol. 2014;116(2):204-9.

Downloads

Publicado

2020-11-20

Edição

Seção

Artigos

Como Citar

Perim, P. H., Heibel, A. B., Artioli, G. G., Gualano, B., & Saunders, B. (2020). Low efficiency of β-alanine supplementation to increase muscle carnosine: a retrospective analysis from a 4-week trial. Revista Brasileira De Educação Física E Esporte, 34(3), 357-364. https://doi.org/10.11606/1807-5509202000030357