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Localized Spectral Envelope 

David S. Stoffer and Hernando Ombao 

Abstract: The concept of the spectral envelope was in­
troduced as a statistical basis for the frequency domain anal­
ysis and scaling of qualitative-valued time series. A major 
focus of this research was the analysis of DNA sequences. A 
common problem in analyzing long DNA sequence data is to 
identify coding sequences that are dispersed throughout the 
DNA and separated by regions of non-coding. Even within 
short subsequences of DNA, one encounters local behavior. 
To address this problem of local behavior in categorical-valued 
time series, we explore using the spectral envelope in conjunc­
tion with the dyadic tree-based adaptive segmentation method 
for analyzing locally stationary processes. 

Key words: Spectral envelope, dyadic-tree based meth­
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1. Introduction 

The concept of spectral envelope for the spectral analysis and scaling of categorical 
time series was first introduced in Stoffer et al (1993a). Subsequently, Stoffer 
et al (1993b) explored the utility of the methodology for analyzing long DNA 
sequences. In that article, it was noted that there may be local behavior within 
a single gene (coding sequence) . In this article, we combine dyadic tree-based 
adaptive segmentation (TBAS) and spectral envelope methodologies to develop 
an evolutionary spectral envelope. 

Before discussing the spectral envelope and adaptive segmentation methodolo­
gies , we focus on the special problems encountered when analyzing a categorical­
valued time series. The spectral envelope was motivated by collaborations with 
researchers who collected categorical-valued time series with an interest in the 
cyclic behavior of the data. For example Table 1 shows the per minute sleep-state 
of an infant taken from a study on the effects of prenatal exposure to alcohol. De­
tails can be found in Stoffer et al (1988), but briefly, an electro-encephalographic 
(EEG) sleep recording of approximately two hours is obtained on a full term infant 
24 to 36 hours after birth, and the recording is scored by a pediatric neurologist 
for sleep state . Sleep state is categorized, per minute, into one of six possible 
states: qt: quiet sleep - trace altern ant , qh: quiet sleep - high voltage, tr: tran­
sitional sleep, a1: active sleep - low voltage, ah: active sleep - high voltage, and 
aw: awake. This particular infant was never awake during the study. 

It is not too difficult to notice a pattern in the data if one concentrates on 
active versus quiet sleep. It would be difficult , however , to try to assess patterns 
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Table 1: Infant EEG Sleep States (per minute) 
(read down and across) 

ah qt qt al tr qt al ah 
ah qt qt ah tr qt al ah 
ah qt tr ah tr qt al ah 
ah qt al ah qh qt al ah 
ah qt al ah qh qt al ah 
ah tr al ah qt qt al ah 
ah qt al ah qt qt al ah 
ah qt al ah qt qt al ah 
tr qt tr tr qt qt al tr 
ah qt ah tr qt tr al 
tr qt al ah qt al al 
ah qt al ah qt al al 
ah qt al ah qt al al 
qh qt al ah qt al ah 

in a longer sequence, or if there were more categories, without some graphical aid. 
One simple method would be to scale the data, that is, assign numerical values to 
the categories according to some optimality criterion, and then draw a time plot 
of the scaled series. 

The material on scaling time series is rather sparse and we do not know of any 
particular references besides those already mentioned. The basic idea, however, 
has been extensively used for the analysis of contingency tables and regression 
with qualitative variables; these come under a number of different titles such 
as dual scaling, for example, Nishisato (1980) and correspondence analysis, for 
example, Greenacre (1984) . These and related topics are also discussed in Breiman 
and Friedman (1985) where the focus is on obtaining optimal transformations, 
numerically, in various situations. For a recent survey, see Michailidis and De 
Leeuw (1998). 

Because the sleep-states have an order, one obvious scaling is 

qt = 1 qh = 2 tr = 3 al = 4 ah = 5 aw = 6, (1) 

and Figure 1 shows the time plot using this scaling. Another interesting scaling 
might be to combine the quiet states and the active states: 

qt = 1 qh = 1 tr = 2 al = 3 ah = 3 aw = 4. (2) 

The time plot using (2) would be similar to Figure 1 as far as the cyclic (in 
and out of quiet sleep) behavior of this infant's sleep pattern. Figure 2 shows the 
periodogram of the sleep data using the scaling in (1). Note that there is a large 
peak at the frequency corresponding to 1 cycle every 60 minutes. As one might 



Localized Spectral Envelope 365 

-

o 20 40 60 80 100 

Minute 

Figure 1: Time plot of the EEG sleep state data in Table 1 using the scaling in 
(1) . 

imagine, the general appearance of the periodogram using the scaling (2) (not 
shown) is similar to Figure 2. Most of us would feel comfortable with this analysis 
even though we made an arbitrary and ad hoc choice about the particular scaling. 
It is evident from the data (without any scaling) that if the interest is in infant 
sleep cycling, this particular sleep study indicates that an infant cycles between 
active and quiet sleep at a rate of about one cycle per hour. 

The intuition used in the previous example is lost when one considers a long 
DNA sequence. Briefly, a DNA strand can be viewed as a long string of linked 
nucleotides. Each nucleotide is composed of a nitrogenous base, a five carbon 
sugar, and a phosphate group. There are four different bases that can be grouped 
by size, the pyrimidines, thymine (T) and cytosine (C), and the purines, adenine 
(A) and guanine (G). The nucleotides are linked together by a backbone of alter­
nating sugar and phosphate groups with the 5' carbon of one sugar linked to the 
3' carbon of the next, giving the string direction. DNA molecules occur naturally 
as a double helix composed of polynucleotide strands with the bases facing in­
wards. The two strands are complementary, so it is sufficient to represent a DNA 
molecule by a sequence of bases on a single strand. Thus, a strand of DNA can 
be represented as a sequence of letters , termed base pairs (bp), from the finite al­
phabet {A, C, G, T}. The order of the nucleotides contains the genetic information 
specific to the organism. Expression of information stored in these molecules is a 
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Figure 2: Periodogram of the EEG sleep state data in Table 1 based on the scaling 
in (1). The peak corresponds to a frequency of approximately one cycle every 60 
minutes. 

complex multistage process. One important task is to translate the information 
stored in the protein-coding sequences (CDS) of the DNA. A common problem 
in analyzing long DNA sequence data is in identifying CDS that are dispersed 
throughout the sequence and separated by regions of non-coding (which makes 
up most of the DNA). Table 2 shows part of the Epstein-Barr virus (EBV) DNA 
sequence. The entire EBV DNA sequence consists of approximately 172,000 bp. 

One could try scaling according to the pyrimidine-purine alphabet, that is 
A = G = 0 and C = T = 1, but this is not necessarily of interest for every 
CDS of EBV. There are numerous possible alphabets of interest, for example, 
one might focus on the strong-weak hydrogen bonding alphabet C = G = 0 and 
A = T = 1. While model calculations as well as experimental data strongly 
agree that some kind of periodic signal exists in certain DNA sequences, there 
is a large disagreement about the exact type of periodicity. In addition, there 
is disagreement about which nucleotide alphabets are involved in the signals (for 
example, compare Ioshikhes et aI, 1992 with Satchwell et aI, 1986). 

If we consider the naive approach of arbitrarily assigning numerical values 
(scales) to the categories and then proceeding with a spectral analysis, the re­
sult will depend on the particular assignment of numerical values. For example, 
consider the artificial sequence ACGTACGTACGT .... Then , setting A = G = 0 and 
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Table 2: Part of the Epstein-Barr Virus DNA Sequence 
(read across and down) 

AGAATTCGTC TTGCTCTATT CACCCTTACT TTTCTTCTTG CCCGTTCTCT TTCTTAGTAT 
GAATCCAGTA TGCCTGCCTG TAATTGTTGC GCCCTACCTC TTTTGGCTGG CGGCTATTGC 
CGCCTCGTGT TTCACGGCCT CAGTTAGTAC CGTTGTGACC GCCACCGGCT TGGCCCTCTC 
ACTTCTACTC TTGGCAGCAG TGGCCAGCTC ATATGCCGCT GCACAAAGGA AACTGCTGAC 
ACCGGTGACA GTGCTTACTG CGGTTGTCAC TTGTGAGTAC ACACGCACCA TTTACAATGC 
ATGATGTTCG TGAGATTGAT CTGTCTCTAA CAGTTCACTT CCTCTGCTTT TCTCCTCAGT 
CTTTGCAATT TGCCTAACAT GGAGGATTGA GGACCCACCT TTTAATTCTC TTCTGTTTGC 
ATTGCTGGCC GCAGCTGGCG GACTACAAGG CATTTACGGT TAGTGTGCCT CTGTTATGAA 
ATGCAGGTTT GACTTCATAT GTATGCCTTG GCATGACGTC AACTTTACTT TTATTTCAGT 
TCTGGTGATG CTTGTGCTCC TGATACTAGC GTACAGAAGG AGATGGCGCC GTTTGACTGT 
TTGTGGCGGC ATCATGTTTT TGGCATGTGT ACTTGTCCTC ATCGTCGACG CTGTTTTGCA 
GCTGAGTCCC CTCCTTGGAG CTGTAACTGT GGTTTCCATG ACGCTGCTGC TACTGGCTTT 
CGTCCTCTGG CTCTCTTCGC CAGGGGGCCT AGGTACTCTT GGTGCAGCCC TTTTAACATT 
GGCAGCAGGT AAGCCACACG TGTGACATTG CTTGCCTTTT TGCCACATGT TTTCTGGACA 
CAGGACTAAC CATGCCATCT CTGATTATAG CTCTGGCACT GCTAGCGTCA CTGATTTTGG 
GCACACTTAA CTTGACTACA ATGTTCCTTC TCATGCTCCT ATGGACACTT GGTAAGTTTT 
CCCTTCCTTT AACTCATTAC TTGTTCTTTT GTAATCGCAG CTCTAACTTG GCATCTCTTT 
TACAGTGGTT CTCCTGATTT GCTCTTCGTG CTCTTCATGT CCACTGAGCA AGATCCTTCT 
GGCACGACTG TTCCTATATG CTCTCGCACT CTTGTTGCTA GCCTCCGCGC TAATCGCTGG 
TGGCAGTATT TTGCAAACAA ACTTCAAGAG TTTAAGCAGC ACTGAATTTA TACCCAGTGA 

C = T = 1, yields the numerical sequence 010101010101.. ., or one cycle every two 
base pairs (w = 1/2). Another interesting scaling is A = 1, C = 2, G = 3, and 
T = 4, which results in the sequence 123412341234 ... , or one cycle every four bp 
(w = 1/4). In this example, both scalings, {A, C, G, T} = {O, 1,0, I} and {A, C, G, 
T} = {I, 2, 3, 4}, are interesting and bring out different properties of the sequence. 
It should be clear that one does not want to focus on only ODe scaling. Instead, the 
focus should be on finding scalings that bring out all of the interesting features in 
the data. Moreover, because of heterogeneity (see e.g. Karlin and Macken, 1991), 
it may be the case that if one scaling works well in one region of a DNA sequence 
that same scaling may work poorly in another region. Rather than choose values 
arbitrarily, the spectral envelope approach selects scales that help emphasize any 
periodic feature that exists in a categorical time series of virtually any length in 
a quick and automated fashion. 

Although it is well known that DNA is heterogeneous, in Stoffer et al (1993b) 
we found that heterogeneities can exist within short subsequences of a single gene. 
In this article, we describe a methodology that will automatically divide a DNA 
sequence into smaller stationary segments and then extract the pertinent informa­
tion from these segments. Our methodology will be an adaptation of the TBAS 
method given in Adak (1998) and Ombao et al (1999). This methodology was 
specifically developed for real-valued non-stationary time series and has been suc­
cessfully applied to a bivariate EEG data set recorded during an epileptic seizure. 
In the next section we will see that categorical time series (and hence DNA se­
quences) are real-valued multivariate time series of a special nature. In addition, 
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we will see that the spectral envelope is a type of principal component analysis for 
multivariate time series. Consequently, in the remaining sections, we adapt the 
dyadic TBAS methodology to the principal component analysis of multivariate 
time series with special attention to categorical time series. 

2. The Spectral Envelope for Categorical Time Series 

As a general description, the spectral envelope is a frequency based, principal 
components technique applied to a multivariate time series . In this section we 
will focus on the basic concept and its use in the analysis of categorical time 
series. Technical details can be found in Stoffer et al (1993a) . 

In establishing the spectral envelope for categorical time series, the basic ques­
tion of how to efficiently discover periodic components in categorical time series 
was addressed. This was accomplished via non parametric spectral analysis as fol­
lows. Let Xt, t = 0, ±1, ±2, ... , be a categorical-valued time series with finite state­
space C = {Cl' C2, ... , Ck}. Assume that X t is stationary and Pj = pr{ X t = Cj} > 0 
for j = 1, 2, ... , k. For fJ = (/31, /32, ... , /3k)' E Rk, denote by XdfJ) the real-valued 
stationary time series corresponding to the scaling that assigns the category Cj 

the numerical value /3j, j = 1, 2, ... , k. The goal is to find scalings fJ so that 
the spectral density is in some sense interesting, and to summarize the spectral 
information by what we called the spectral envelope. 

We chose fJ to maximize the power (variance) at each frequency w, across 
frequencies W E [-1/2,1/2], relative to the total power o-2(fJ) = var{Xt(fJ)}. 
That is, we chose fJ(w), at each W of interest, so that 

{ f(WjfJ)} 
A(W) = s~p o-2(fJ) , (1) 

over all fJ not proportional to 1k, the k x 1 vector of ones. Note that A(W) is not 
defined if fJ = ah for a E R because such a scaling corresponds to assigning each 
category the same value aj in this case f(wj fJ) == 0 and o-2(fJ) = O. The optimality 
criterion A(W) possesses the desirable property of being invariant under location 
and scale changes of fJ. 

As in most scaling problems for categorical data, it was useful to represent 
the categories in terms of the unit vectors el, e2, ... , ek, where ej represents the 
k x 1 vector with a one in the j -th row, and zeros elsewhere. We then defined a 
k-dimensional stationary time series Y t by Y t = ej when X t = Cj . The time series 
X t (lJ) can be obtained from the Y t time series by the relationship Xt (fJ) = fJ'Y t. 
Assume that the vector process Y t has a continuous spectral density denoted by 
fy(w). For each w, fy(w) is, of course, a k x k complex-valued Hermitian matrix. 
Note that the relationship Xt(fJ) = fJ'Yt implies that fy(Wj fJ) = fJ'fy(w)fJ = 
fJ' lye (w)fJ, where lye (w) denotes the real part of fy (w). The optimality criterion 
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can thus be expressed as 

..\( ) _ {P'fV(W)P} 
w - s~p p'vp (2) 

where V is the variance-covariance matrix of Y t . The resulting scaling fJ(w) is 
called the optimal scaling. 

The Y t process is a multivariate point process, and any particular component 
of Y t is the individual point process for the corresponding state (for example, the 
first component of Y t indicates whether or not the process is in state Cl at time 
t) . For any fixed t , Y t represents a single observation from a simple multinomial 
sampling scheme. It readily follows that V = D - pp', where p = (Pl, ... , Pk)' , and 
D is the k x k diagonal matrix D = diag{pl' .. . , Pk}. Since, by assumption, Pj > 0 
for j = I, 2, .. . , k, it follows that rank(V) = k - 1 with the null space of V being 
spanned by lk. For any k x (k - 1) full rank matrix Q whose columns are linearly 
independent of lk' Q'V Q is a (k - 1) x (k - 1) positive definite symmetric matrix. 

With the matrix Q as previously defined, and for w E [-1/2,1/2], define A(W) 
to be the largest eigenvalue of the determinantal equation 

IQ'fV(w)Q - AQ'VQI = 0, 

and let b(w) E R k - l be any corresponding eigenvector, that is, 

Q'fYe(w)Qb(w) = A(w)Q'VQb(w) . 

The eigenvalue ..\(w) 2: 0 does not depend on the choice of Q. Although the 
eigenvector b(w) depends on the particular choice of Q, the equivalence class of 
scalings associated with P(w) = Qb(w) does not depend on Q. A convenient choice 
of Q is Q = [h-l 10 J', where h-l is the (k - 1) x (k - 1) identity matrix and 
o is the (k -1) x 1 vector of zeros . For this choice, Q'fye(w)Q and Q'VQ are 
the upper (k - 1) x (k - 1) blocks of fV(w) and V, respectively. This choice 
corresponds to setting the last component of P(w) to zero. 

The value A(W) itself has a useful interpretation; specifically, A(w)dw represents 
the largest proportion of the total power that can be attributed to the frequencies 
within a dw neighborhood of w for any particular scaled process Xt(fJ), with the 
maximum being achieved by the scaling P(w). Because of its central role, A(W) 
was defined to be the spectral envelope of a stationary categorical time series. 

The name spectral envelope is appropriate since A(W) envelopes the standard­
ized spectrum of any scaled process. That is, given any P normalized so that X t (P) 
has total power one, f(w;P) ~ A(W) with equality if and only if fJ is proportional 
to fJ(w) . 

Although the law of the process X t (fJ) for any one-to-one scaling fJ completely 
determines the law of the categorical process X t , information is lost when one 
restricts attention to the spectrum of Xt(fJ). Less information is lost when one 
considers the spectrum of Y t . Dealing directly with the spectral density fy (w) 
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itself is somewhat cumbersome since it is a function into the set of complex Her­
mitian matrices. Alternatively, one can view the spectral envelope as an easily 
understood, parsimonious tool for exploring the periodic nature of a categorical 
time series with a minimal loss of information. 

If we observe a finite realization of the stationary categorical time series X t , or 
equivalently, the multinomial point process Y t , t = 1, ... , T, the theory for estimat­
ing the spectral density of a multivariate, real-valued time series is well established 
(e.g. Brillinger, 1975 or Hannan, 1970) and can be applied to estimating /Yew), 
the spectral density of Y t . Given an estimate jy(w) of /Yew), estimates X(w) 
and pew) of the spectral envelope, A(W), and the corresponding scalings, (:J(w), 
can then be obtained. Details on estimation and inference for the sample spectral 
envelope and the optimal scalings can be found in Stoffer et al (1993a), but the 
main result of that paper is as follows. If Jy(w) is a consistent spectral estimator 
and if for each j = 1, ... , J, the largest root of fYe(Wj) is distinct, then 

converges (T -+ 00) jointly in distribution to independent zero-mean normal dis­
tributions, the first of which is standard normal. The term rrr in (3) depends 
on the type of estimator being used. For example, if the spectral estimate is ob­
tained by a simple average of 2MT + 1 periodograms around a central value, then 
1Jf = (2MT + 1).1 Based on these results, asymptotic normal confidence intervals 
and tests for A(W) can be readily constructed. Similarly, for (:J(w), asymptotic 
confidence ellipsoids and chi-square tests can be constructed; details can be found 
in Stoffer et al (1993a, Theorems 3.1 - 3.3). 

Searching for peaks in the spectral envelope estimate can be aided using the 
following approximations. Using a first order Taylor expansion we have 

~ X(w) - A(W) 
10gA(w) ~ 10gA(w) + A(W) , (4) 

so that rrr[logX(w) -logA(w)] is approximately standard normal under the con­
ditions for which (3) is true. It also follows that E[logj(w)] ~ 10gA(w) and 
var[logX(w») ~ 1J:;.2. If there is no signal present in a sequence of length T, we 
expect AU/T) ~ 2/T for 1 < j < T/2, and hence approximately (1 - a) x 100% 
of the time, 10gX(w) will be less than log(2/T) + (za/rrr) where Za is the (1- a) 
upper tail cutoff of the standard normal distribution. Exponentiating, the a crit­
ical value for X(w) becomes (2/T) exp(za/rrr) . From our experience, thresholding 
at very small values of a relative to the sample size works well. 

A step-by-step approach to calculate the sample spectral envelope and optimal 
scalings for DNA sequences, using the nucleotide alphabet, is as follows. For 
numerical examples, see Stoffer et al (1993a, 1993b, 2000). 

lWe take MT -+ ex> as T -+ ex> but with MT/T -+ o. 
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• Let X t denote the DNA sequence of interest. Holding the scale for T fixed 
at zero, form 3 x 1 vectors Y t : 

Y t = (1,0,0)' if X t = A; 
Y t = (0,0, I)' if X t = G; 

Y t = (0,1,0)' if X t = C; 
Y t = (0,0,0), if X t = T. 

The scaling vector is fJ = (fJl, fJ2, /33)', and the scaled process is Xe(fJ) 
fJ'Y t . 

• Calculate the discrete Fourier transform (DFT) of the data, 

T 

d(wj) = T- 1/ 2 LYt exp( -211"itwj) , 
t=1 

where Wj = j/T for j = I, ... , [T/2]. Note that d(wj) is a 3 x 1 complex­
valued vector . From these values, calculate the 3 x 3 periodogram matrices, 
IT(wj) = d(wj)d*(wj), and retain only the real part, say I:/(Wj). 

• Smooth the periodogram if desired (recommended) to obtain an estimate of 
the spectral matrix re(Wj), say jre(Wj). For example, we could set 

M 

jre(Wj) = L hgI!/(wj + q/T) 
g=-M 

where the weights are chosen so that hg = h_g > 0 and 2:!-M hg = l. 
A simple average corresponds to the case where hg = 1/(2M + 1) for q = 
-M, ... ,O, ... ,M. 

• Next, calculate the 3 x 3 sample variance-covariance matrix given by S = 
T - - -. 

T- 1 2:t=1 (Y t - Y)(Y t - Y)', where Y IS the vector of sample means. 

• For each Wj, determine the largest eigenvalue and the corresponding eigen­
vector of the matrix 2T- 1S- 1/ 2jre(Wj)S-I/2. Note that Sl/2 is the unique 
square root matrix of S. 

• The sample spectral envelope ::X(Wj) is the eigenvalue obtained in the previous 
step. If b(wj) denotes the eigenvector obtained in the previous step, the 
optimal sample scaling is P(Wj) = S-1/2b(wj); this will result in 3 values, 
the value corresponding to the 4-th category (T in this case) being held fixed 
at zero. 
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3. Tree-Based Adaptive SegIllentation for the Spectral Envelope 

It is well known that long DNA sequences are heterogeneous. One subsequence 
(block) may contain genetic information that is unique from other blocks. Other 
blocks may not contain any genetic coding information at alL Genetic sequences 
are generally very long and our goal is to develop a fast and efficient method than 
can search for blocks that contain similar genetic information and to separate 
these blocks from other blocks that either contain different genetic information or 
non-coding information (noise). 

In this section, we will describe an algorithm for segmenting a DNA sequence. 
The strategy adopted is to divide the sequence into small blocks and then re­
combine adjacent blocks whose estimated spectral envelopes are sufficiently close. 
The basic idea is that adjacent blocks with close spectral envelope estimates give 
similar genetic information . The main features of the algorithm are: (i) it divides 
the sequence in a dyadic manner and (ii) it uses a well-defined measure of distance 
(or similarity) between the genetic coding information contained at two adjacent 
(common split) blocks. Our method is inspired by the algorithm in Adak (1998). 

We now give the algorithm. 

• Set the maximum level J. The value of J determines the smallest possible 
size of the segmented blocks. For a sequence of length T, the smallest blocks 
have length T /2-'. Ideally, the block sizes should be small enough so that 
one can separate useful genetic information unique to that block from the 
non-coding material (noise). One should be careful, however, about making 
the blocks too small. Blocks have to be large enough to give good estimates 
of the spectral envelope. 

• Set the blocks: For j = D, .. . , J, divide the data sequence into 2j blocks. 
Denote B(l, j) to be the f-th block on level j, where f = 1, ... , 2j . The first 
block on level j is denoted as B(I, j) and the last as B(2j, j). The "inner" 
blocks B(f, i), (where f = 2, .. . , 2j -1), consists of the elements ofthe DNA 
sequence {X[(l-1)2i + 1)"' " X[l2i)}. 

• (This step is optional) Tapers: The inner blocks can be extended towards 
adjacent blocks and the outer blocks (first and last) at each level can be 
padded with zeroes in order to apply tapers. Tapering can reduce leakage 
in estimates of the spectrum and the spectral envelope. 

• Compute an estimate of the spectral envelope Al,j(Wk) for each frequency 
Wk (k = D, ... ,Mj = T/2 j ) at each block B(f,j) where j = D, ... ,J, f = 
1, ... , 2j . 

• Define the threshold at level j to be a j. A discussion on significance levels 
and threshold is given in Equation (4). 

• Form the denoised estimate, >:l,j(W) of the spectral envelope by applying 
a hard threshold on the estimate in Step 4, i.e., Al,j(Wk). Any value of 
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Xl,j(Wk) that does not survive the threshold Cij is considered as noise. More 
formally, 

if Xl ,j(Wk) > Cij 
otherwise 

(5) 

• Compute the peak information function Pl,j(Wk) at block B(f,j) as follows . 
Let nl,j,k = {wv where v = k - Se ,j, . . . ,v = k + Sl ,j } be a collection of 
frequencies centered about Wk with Se ,j being the span for block f and level 
j . The peak information function is 

if Xl,j (Wk) 
otherwise 

(6) 

• Compute the distance, D, between two children blocks. For j = 0, .. . , J -1, 
and f = 1, ... 21 : 

Mj+,j2 

D(£,j) = L !PU,j+t{Wk) - PU+l,j+l(Wk)! (7) 
k=O 

• Marking the blocks for final segmentation . For j = J - 1, . . . ,0, and f = 
1, ... ,21, define V(f,j) = D(f, j) . Mark the blocks B(f, J -1) as terminal. 
If j < J -1 and if V(2f,j + 1) + V(2f+ 1,j + 1) ::; V(f,j) then mark the 
block B(f, j) as terminal. Otherwise, leave the block B(f, j) as unmarked 
andset V(f,j) = V(2f,j+1) + V(2f+1,j+1). 

The final segmentation of the DNA sequence is the set of highest marked 
blocks: {B(f,j) such that B(f,j) is marked and its parent block and ancestor 
blocks are not marked}. 

4. Analysis of the EBV DNA Sequence 

We applied our algorithm to a data set that is a subseries of the DNA sequence of 
the Epstein Barr virus. The subseries consists of elements of the DNA sequence 
with index from 46001 to 54192. This data set has length T = 8192. In the 
implementation, we report the fine tuning parameters that we have chosen. 

• We chose the level J = 5 so that the smallest blocks have 256 elements. 

• We applied a taper and extended the blocks at all levels j = 0, ... , 5 by 128 
on each side. As a result, each of the blocks at level j = 5 had 256+2 x 128 = 
512 elements. Note that the effect of the taper at larger blocks diminishes. 
Tapering is no longer necessary when block sizes are large. 
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Figure 3: Best Segmentation of the EBV DNA sequence . 

• We chose the threshold aj = exp(3/Mj). Note that this corresponds to 
the 0.01 significance level testing in Equation (4) . 

• We chose the span Si,j = 0.10Mj for all blocks e. This ensures that peaks 
maintain their local behavior. 

The segmentation selected by our algorithm is given in Figure 3. The seg­
mentation consists of blocks B(4, 1), B(4, 2), B(4, 3) , B(4, 4), B(2, 2) and B(l, 1). 
The spectral envelopes are given in Figure 4. It is very interesting to note that 
the DNA sequence of EB virus with index 50097 to 54192 indeed does not contain 
any coding information. Hence, our algorithm was able to isolate block B(1, 1) 
as containing "noise". Moreover, the DNA sequence with index 48386 to 50032 
contains the coding information "EBNA-2". Our algorithm was able to isolate 
block B(2,2) as containing this coding information. Finally, the DNA sequence 
with index 46333 to 47481 contains the coding information "BWRF-12". This 
information is captured by the three blocks B(2, 1), B(2, 2) and B(2,3). It is not 
known, at this point, if Block B( 4,4) contains non-coding information or some 
useful genetic information that is waiting to be uncovered. 
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Figure 4: Estimated spectral envelope at each block of the EBV DNA sequence. 

Remarks . 

• On dyadic segmentation: Dyadic tree-structured based methods are widely 
used and well accepted in the statistics literature. One example of a dyadic 
tree-based method is CART (Classification and Regression Trees) of Brei man 
et al (1984) . In the time series literature, we now have well developed meth­
ods and theory that are based on dyadic segmentation. See for example 
Mallat et al (1998), Adak (1998) and Donoho et al (1998) and Ombao et 
al (1999). The Auto-SLEX method in Ombao et al (1999) was applied suc­
cessfully to a nonstationary EEGs recorded during an epileptic seizure. The 
goal was to estimate the time-varying spectra of the EEGS and coherence 
between the two EEGs. It was clearly demonstrated in Ombao et al (1999) 
that the Auto-SLEX method, which is dyadic-based, does not suffer even 
when applied to biological signals that do not necessarily have a dyadic 
structure. The only condition is that these signals have to be sufficiently 
long. This is condition easily satisfied by all DNA sequences. 
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• On the distance: The distance D(f, j) counts the number of peaks at oc­
curring different at frequencies between the children blocks. If the peaks at 
the two children blocks occur at different frequencies then the two children 
blocks are said to contain different genetic information . The magnitude of 
the difference in genetic information is captured by the distance D(f, j) . 

• Efficient computation : It is necessary to use computationally efficient meth­
ods when analyzing very long time series data sets. Dyadic transforms are 
useful tools for developing computationally efficient methods. The algorithm 
presented is efficient because it uses two computationally efficient methods. 
In computing the estimates of the spectral envelope, we used the Fast Fourier 
transform. Moreover, the selection of the final segmentation was delivered 
by Best Basis Algorithm (BBA) of Coif man and Wickerhauser (1992) . Wick­
erhauser (1994) devotes a chapter to BBA and related cost measures. 

• Relationship to the Adak algorithm: The Adak (1998) method is useful for 
estimating the time-varying spectrum of a univariate non-stationary pro­
cess. Spectral estimates are compared between children blocks and distance 
measures were proposed . The algorithm presented in this article is for multi­
variate non-stationary categorical time series. Instead of spectral estimates, 
we compare the estimated spectral envelopes between blocks. Moreover, 
our distance function is unique from what was developed in Adak (1998) . 
The distance function used in our algorithm is specific for time series data 
sets whose spectra have power concentrated at a very narrow band of fre­
quencIes. 

5. Discussion and Conclusion 

Fourier analysis of categorical time series has been applied successfully in molecu­
lar genetics for quite some time. For example, McLachlan and Stewart (1976) and 
Eisenberg et al (1984) studied the periodicity in proteins with Fourier analysis . 
They used predefined scales (or alphabets) and observed the w = 3~6 frequency of 
amphipatic helices. Because predetermination of the scaling is arbitrary and may 
not be optimal , Cornette et al (1987) reversed the problem and started with a 
frequency of Wo = 316 and proposed a method to establish an 'optimal ' scaling at 
Wo = 3\ ' Viari et al (1990) generalized this approach to a systematic calculation 
of a type of spectral envelope (which they called A-graphs) and of the correspond­
ing optimal scalings over all fundamental frequencies. While the aforementioned 
authors dealt exclusively with amino acid sequences, various forms of harmonic 
analysis have been applied to DNA by, for example, Tavare and Giddings (1989) , 
and in connection to nucleosome positioning by Satchwell et al (1986) and Bina 
(1994). The basic technique of the spectral envelope for categorical time series 
is similar to the methods established in Tavare and Giddings (1989) and Viari 
et 'al (1990), however, there are some differences. In particular, the techniques 
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differ by the optimality criterion used. Also, the spectral envelope methodology is 
developed in a statistical (rather than graphical) setting to allow the investigator 
to distinguish between significant results and those results that can be attributed 
to chance. 

As previously indicated, the spectral envelope methodology could come under 
the general title of spectral domain principal component analysis of multiple time 
series. This topic is discussed in detail in Chapter 9 of Brillinger (1975) and there 
is a connection between Brill inger's work and the spectral envelope. Specifically, 
the spectral envelope can be viewed as a special case of Brillinger's principal 
components. In the language of Brillinger (1975, Section 9.3), suppose we want to 
approximate Y t, a k x 1 stationary time series with mean Py, variance-covariance 
matrix V, and spectral matrix fy (w), by finding a scalar process, Zt, defined by 

00 

Zt = L b~_jYj, (8) 
j=-oo 

and absolutely summable k x 1 filters {bd and {cd, so that the error of ap­
proximation, Y t - Yt is small relative to mean squared error, where Yt = py + 
L}:-oo Ct_jZj . If b(w) is the transform of bt , and fz(w) the spectral density of 
Zt, then the problem becomes one of finding a complex vector b(w), subject to the 
constraint that b*(w)Vb(w) = 1, such that 

fz(w) = b* (w)Jy (w)b(w) 

is maximized. The solution, of course, is that b(w) is the eigenvector corresponding 
to the largest eigenvalue of Jy (w) in the metric of V, say A (w), and hence f z (w) = 
A(W) with b(w) so chosen. 

In the language of scaling, we would state the same problem as follows. Given a 
vector process Y t find a complex vector b such that at a given frequency w the time 
series Zt(b) = b*Yt has the largest possible spectrum (subject to b*Vb = 1). The 
solution is to choose b = b(w), that is, the eigenvector corresponding to the largest 
eigenvalue of Jy(w) in the metric of V. In this case the spectrum of Zt(b(w», say 
fz(w, b(w», attains the largest possible value, A(W). Hence, Brillinger's approach 
can be seen as a scaling problem with complex-valued scales. In our approach, 
we restrict b(w) to be real and Y t to be the multiple indicator process associated 
with a categorical-valued process. 

We have extended the concept of the spectral envelope for a stationary cate­
gorical time series to the situation .where the time series is stationary only over 
short intervals. DNA sequences exhibit this kind of behavior; as seen in Section 4, 
the spectral envelopes differ between subsequences. The concept of an evolution­
ary spectral envelope is yet to be formalized. Our contribution to this new idea 
is the development of a computationally efficient algorithm that can segment a 
DNA sequence into separate blocks that give unique genetic coding information. 

In the theoretical development of an evolutionary spectral envelope, we can 
use the model of a locally stationary process of Dahlhaus (1997) or its special case 
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given in Chiann and Morettin (1999). For ease of exposition, we just state the 
model for the univariate case. The extension to multivariate is given in Dahlhaus 
(1999). 

A sequence of zero-mean stochastic processes {Xt,T,t = 1, ... ,T} is called 
locally stationary if it admits a Cramer-like representation 

11/2 

Xt,T = exp(2rriw)A(t/T,w)dZ(w), 
-1/2 

(9) 

where Z(w) is a stochastic process whose increments are orthogonal and satisfy 
regularity conditions on its cumulants. The function A(·) is the time-varying filter. 
Under this model, the evolutionary spectrum is defined to be f(u,w) = IA(u,w)l2. 
Under the Dahlhaus model, one can form consistent estimators of the evolutionary 
spectrum by computing the spectrograms. One problem with this approach is that 
it will be computationally burdensome particularly when the time series is very 
long. 

The dyadic segmentation framework is computationally efficient and provides 
a remedy to the above problem. It is in the tradition of the growing body of work 
used in regression and signal processing. Under the dyadic segmentation frame­
work, consistent estimators for the Dahlhaus time-varying spectrum are formed 
when the segmentation is known. This result is given in Ombao et al (1999). 
Thus, one conjecture that can be given at this point is that under known segmen­
tation, one can also form a consistent estimator for the true spectral envelope if 
the evolving spectral envelope follows the same smoothness assumptions of the 
Dahlhaus evolving spectrum. The next step is to rigorously define that evolving 
spectral envelope. Moreover, the over-all consistency still has to be addressed 
given that the segmentation has to selected from the data. 
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