COMPARATIVE STUDY BETWEEN PHASE CONTRAST AND DIFFERENTIAL INTERFERENCE CONTRAST MICROSCOPIES FOR EVALUATION OF FROZEN BULL SEMEN

VALQUIRIA HYPÓLITO BARNABE
Professor Livre-Docente
Faculdade de Medicina Veterinária e Zootecnia da USP

RENATO CAMPAagnarut BARNABE
Professor Adjunto
Faculdade de Medicina Veterinária e Zootecnia da USP

JOSÉ ANTONIO VISINTIN
Auxiliar de Ensino
Faculdade de Medicina Veterinária e Zootecnia da USP

WILSON GONÇALVES VIANA
Professor Assistente
Faculdade de Medicina Veterinária e Zootecnia da USP

JOÃO FLORIANO CASAGRANDE
Médico Veterinário
SEMBRA - Técnicas e Produtos de Reprodução Ltda. - Barretos

CARLOS ALBERTO DE ALMEIDA
Médico Veterinário
SEMBRA - Técnicas e Produtos de Reprodução Ltda. - Barretos

INTRODUCTION

Several studies have shown that impaired fertility in the bull may be related to morphologic defects in spermatozoa. Thus, evaluation of spermatozoal morphologic features is an important aid in assessing a bull’s breeding soundness. Spermatozoal morphologic features have generally been evaluated in stained seminal smears. Although procedures for preparing stained smears may be detrimental to spermatozoa integrity.

Phase contrast and differential interference contrast microscopies make it possible to evaluate spermatozoa morphologic features in wet preparations of semen, with buffered formol saline or 0.2% glutaraldehyde in phosphate-buffered saline. This last fixation procedure allows the transport of semen samples preventing cellular injuries and the possibility of storage up to 29 days.

Resolution of differential interference contrast is improved over that of phase contrast microscope because interference halos are greatly minimized.

Differential interference contrast microscope has been used for the study of correlations between spermatozoal abnormalities and fertility and for routine evaluation of semen, including all the ejaculations of bulls in service.

The objective in the present investigation was to compare phase contrast and differential interference contrast methods, regarding acrosome evaluation and major and minor defects in frozen semen of bulls.

MATERIAL AND METHOD

There were studied 200 ampules of frozen semen from 10 bulls, donors in an Artificial Insemination Centre placed in Barretos, São Paulo State, Brazil. The ampules referred to four groups of 50 each, corresponding to semen frozen in 1975, 1976, 1977 and 1978.

Fixation with buffered formol saline or buffered glutaraldehyde was accomplished by pipetting a drop of semen into 4.5 ml vials containing 2 ml of fixative. Wet mounts were prepared by placing a drop of fixed semen on the center of clean slides under 22 by 30 mm coverslips luted by nail varnish.

Semen evaluations were made after thawing and after being placed in a 38°C water bath for 5 hours (Slow Thermoresistance Test) or in a 45°C water bath for 1 hour (Quick Thermoresistance Test).

Buffered formol saline material was examined under 1000 x magnifications phase contrast microscope in oil immersion.

Differential interference contrast microscopy was used to evaluate wet preparations in buffered glutaraldehyde at 1250 x magnifications in oil immersion.

With each method, 200 spermatozoa were evaluated per slide with results give in percentage. Classification into major and minor defects was adopted, besides acrosome evaluation.

Data were analysed by analysis of variance. Differences between treatments were compared using F test, fixing
the rejection level to nullity hypothesis in 0.01%.

RESULTS AND DISCUSSION

As it may be seen in Table 1, higher (P < 0.01) percentages of alterations of the acrosomal cap and major defects were obtained on semen samples fixed in buffered glutaraldehyde examined under differential interference contrast microscope than on buffered formol saline using phase contrast microscope. Relatively to minor defects both methods did not differ for interpretation of sperm abnormalities. These features have been shown in post thawing semen and even as after incubations tests to 380°C or 450°C.

Particularly in relation to acrosome and head abnormalities whose interpretation requires more carefulness, more defects were counted in differential interference contrast microscope than in phase contrast, even though it was the same original semen sample. High magnifications can be obtained with phase contrast. However, due to interference halos around sperm, resolution is not quite as good as that obtained with differential interference contrast microscope1,2,4,7,11. This technic provides examination with an excellent method for directly examining sperm samples for abnormalities with a high degree of precision, what has greatly enhanced the quality control program of frozen semen.

Since status of spermatozoa fixed in glutaraldehyde is not affected by transport9 or storage time up to at least 29 days6, seminal samples can be fixed and shipped for evaluation to laboratories where differential interference contrast microscopy is available.

Alterations of the acrosomal cap more frequently found in our samples included since loss of apical ridge and swelling of anterior acrosomal cap with formation of equatorial segment to deterioration and loss of anterior acrosomal cap. Major defects included predominantly abnormal heads, sinuous mid-piece and some proximal droplets, while minor defects were characterized chiefly by coiled tails and loose heads.

In Figure 1, obtained in phase contrast microscope, characteristics halos around sperm can be observed. On the other hand, in Figure 2, obtained in differential interference contrast microscope, the image produced results in sperm appearing as though the light was originating from the side, giving a clear-cut appearance.

Evaluation of acrosomal alterations accompanying sperm aging or injury as well as sperm morphology counts can be performed in differential interference contrast microscope without staining of semen smears. This not only has the advantage of saving time in slide preparation, but reduces chances of artifacts often produced in killed-stained preparations5.

CONCLUSIONS

The comparative study between phase and differential interference contrast microscopes for evaluation of frozen bull semen after thawing and after incubation tests has shown: 1) clear superiority of differential interference contrast over phase contrast microscopy for examination of acrosomal pathology and major defects of sperm; 2) no significant difference between the two methods for examination of minor defects.

REFERENCES

4. FLEMING, W.N.; OLAR, T.R.; MITCHELL, J.R.
Comparative study between phase contrast and differential interference contrast microscopies for evaluation.

Received for publication on: 22-09-80.
Aprovado para publicação em: 14-04-81.

Figure 1 - Phase-contrast microscopy. Bull spermatozoa. 1000 X
Figure 2 - Differential interference contrast microscopy. Bull spermatozoa. 1250 X
Table 1 — Analysis of variance and "F" test of data from morphological characters of spermatozoa in frozen bulls semen, in phase-contrast and differential interference contrast microscopies. S. Paulo, 1979.

<table>
<thead>
<tr>
<th>SPERMATIC PATHOLOGY</th>
<th>YEAR OF FREEZING</th>
<th>AVERAGE AFTER THAWING</th>
<th>AVERAGE AFTER Q.T.T.</th>
<th>AVERAGE AFTER S.T.T.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>I</td>
<td>F</td>
</tr>
<tr>
<td>Acrosomal pathology</td>
<td>1975</td>
<td>3.54 ± 0.12</td>
<td>6.12 ± 0.17</td>
<td>149.9**</td>
</tr>
<tr>
<td></td>
<td>1976</td>
<td>3.19 ± 0.14</td>
<td>5.17 ± 0.19</td>
<td>64.0**</td>
</tr>
<tr>
<td></td>
<td>1977</td>
<td>2.92 ± 0.15</td>
<td>4.62 ± 0.17</td>
<td>52.7**</td>
</tr>
<tr>
<td></td>
<td>1978</td>
<td>1.48 ± 0.19</td>
<td>2.92 ± 0.20</td>
<td>26.4**</td>
</tr>
<tr>
<td>Major defects</td>
<td>1975</td>
<td>2.48 ± 0.15</td>
<td>4.14 ± 0.25</td>
<td>32.1**</td>
</tr>
<tr>
<td></td>
<td>1976</td>
<td>1.63 ± 0.10</td>
<td>3.08 ± 0.16</td>
<td>52.2**</td>
</tr>
<tr>
<td></td>
<td>1977</td>
<td>1.67 ± 0.14</td>
<td>2.90 ± 0.19</td>
<td>25.5**</td>
</tr>
<tr>
<td></td>
<td>1978</td>
<td>1.09 ± 0.17</td>
<td>2.64 ± 0.22</td>
<td>28.6**</td>
</tr>
<tr>
<td>Minor defects</td>
<td>1975</td>
<td>6.33 ± 0.26</td>
<td>6.31 ± 0.28</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>1976</td>
<td>4.81 ± 0.22</td>
<td>5.32 ± 0.24</td>
<td>2.29</td>
</tr>
<tr>
<td></td>
<td>1977</td>
<td>3.93 ± 0.19</td>
<td>3.61 ± 0.23</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>1978</td>
<td>4.84 ± 0.23</td>
<td>5.22 ± 0.29</td>
<td>1.06</td>
</tr>
</tbody>
</table>

** = (P < .01)
(n.s.) = no significant
Q.T.T. = Quick Thermoresistance Test
S.T.T. = Slow Thermoresistance Test
C = phase-contrast microscopy
I = differential interference contrast microscopy
F = "F" test - Snedecor