CELL MEDIATED IMMUNE RESPONSE IN HUMAN ANTIRABIES REVACCINATION

Dêbora Regina VEIGA, Carlos Roberto ZANETTI, Nelson Figueiredo MENDES &
Octávio Augusto de Carvalho PEREIRA

S U M M A R Y

The occurrence of secondary cell mediated immune response (CMI) in human antirabies immunization was studied.

The Fuenzalida & Palácios vaccine was used because it is routinely used in Brazil.

CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue) antigens.

Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group.

A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group.

Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

KEY WORDS: Human antirabies revaccination; Cellular immunity in rabies; Antirabies immune response

I N T R O D U C T I O N

The involvement of the different immunological mechanisms in protection against rabies is still poorly understood. Neutralizing antibodies are produced in response to active immunization but their actual role in protection is not yet well established.

In some situations circulating antibodies seem to be clearly involved in protection

In addition inadequately immunized animals, presenting high antibody titers, may die earlier than non-immunized ones when challenged with rabies virus. There is evidence suggesting that this phenomenon, known as “early death”, is related to the presence of specific antibodies.

In experimental models protection can be obtained by administration of interferon or an induced of its synthesis, either before or immediately after the challenge. In practice,
ce, however, protection is undoubtedly achieved with a vaccination schedule, frequently initiated some days after natural infection and there is no evidence that our commercial vaccines are good inducers of interferon synthesis.

The protective role played by cell mediated immunity (CMI) in several viral infections is already well recognized but its importance in the critical events involved in the host-rabies virus interaction is still obscure.

Recent observations have demonstrated the occurrence of CMI in response to antirabies vaccination in humans, dogs, rabbits, hamsters, guinea-pigs and mice. A direct correlation, under experimental conditions in mice, between CMI and survival against street rabies virus challenge by intracerebral route has been established.

Secondary CMI was demonstrated in mice after inoculation of either a vaccine booster dose or street rabies virus and this response was not inhibited by previous administration of neutralizing antibodies. In contrast, passive immunization of nonvaccinated animals inhibits CMI to rabies antigens.

The purpose of this paper was to study the development of CMI in previously vaccinated persons after revaccination with the Fuenzalida & Palacios vaccine, routinely used in most Latin-American countries.

MATERIALS AND METHODS

Revaccinated individuals

Eleven volunteers, previously vaccinated against rabies and working in rabies research or diagnosis laboratories with ages from 22 to 56 years constituted the group under study. Ten of them received one dose of antirabies vaccine and the other one, (JL) who had been naturally exposed to rabies virus, received one daily dose for three consecutive days.

Primo-vaccinated individuals

Three volunteers who had never been exposed to rabies antigen were immunized with one daily dose of vaccine for five consecutive days. They constituted the control group since CMI has been previously reported to occur with this immunizing schedule.

Antirabies vaccine

The Fuenzalida & Palacios vaccine is routinely used in our country for human vaccination. The vaccine was prepared at Instituto Butantan, São Paulo, Brazil. Briefly, this vaccine is prepared from newborn mouse brain (myelin free) previously inoculated by intra-ce- rebral route with fixed rabies virus, strain PV. It is inactivated by U.V. radiation and contains 2% nervous tissue, 0.5% phenol and 1:10,000 thimerosal.

Antigens for lymphoblastic transformation assay

Rabies antigen (R-Ag) was prepared essentially as the vaccine except that it contained 10% nervous tissue and no preservatives.

Control rabies antigen (C-Ag) was the same as R-Ag but prepared from non-inoculated newborn mice.

Lymphoblastic transformation assay

The assay was performed as described by Hall & Gordon with few modifications. Briefly, heparinized blood was collected and diluted 1:10 in RPMI — 1640 (Gibco-Grand Island Company, N.Y.). All control and test lymphocyte cultures were set up in triplicate.

Test cultures consisted of 1.0 ml of 1:10 whole blood plus 100 μl of a 1:4 dilution of either rabies antigen or control rabies antigen. Test cultures were incubated for 144 hours at 37°C under 5% CO₂ humidified atmosphere. In previous experiments with the primovaccinat- ed group maximum lymphocyte stimulation was obtained at that time of culture and antigen dilution, which also showed no toxic or mitogenic activity on lymphocytes from non-imunized individuals (unpublished results).

Control cultures consisted of 1.0 ml of 1:10 whole blood plus 100 μl of either phytohemagglutinin — P (PHA — Difco, Detroit, Mchi) or RPMI — 1640. Control cultures were incubated for 72 hours under the same conditions.

Six hours before the end of incubation period 10 μl of ³H thymidine (specific activity
2.49 x 10^{11} \text{Bg/mol}, \text{New England Nuclear, Boston, Mass}) were added to each culture.

After incubation, cultures were centrifuged and the supernatants discarded. The sediment received 2.0 ml of 3% cold acetic acid and was centrifuged and the supernatants discarded. The sediment received 2.0 ml of 3% cold acetic acid and was centrifuged at 400 x g for 10 minutes. Pellets were resuspended in 1.0 ml of 7% cold trichloroacetic acid and centrifuged.

The new pellets were resuspended in 1.5 ml of methanol and centrifuged. Supernatants were carefully removed and pellets were solubilized with Protosol (New England Nuclear, Boston, Mass) by incubation at 50°C for 30 minutes. Immediately after 5.0 ml of scintillation fluid was added to each tube. After an overnight incubation each sample was counted for 1 minute in a Beta scintillation counter (Beckman LS350).

Lymphoblastic transformation was expressed as an index (LTI) obtained as follows:

\[
\text{LTI} = \frac{\text{mean cpm of cultures with R Ag or C Ag}}{\text{mean cpm of cultures without antigens}}
\]

Indices higher than 2.0 were considered as positive. PHA was used as a control, to assure that every lymphocyte culture under assay could respond normally to mitogenic stimulation.

RESULTS

Table I shows lymphoblastic transformation indices obtained with blood samples from the primo-vaccinated volunteers in the presence of R Ag and C Ag at different intervals since the beginning of vaccination.

Positive results (index > 2) with R Ag were obtained since the 7^{th} day, reached a maximum at about the 14^{th} day and were still positive at the 35^{th} day, when the last assay was performed. Response to C Ag in this group was very low, with results usually negative, except for the indices shown by volunteer DRV at days 10, 14 and 21.

In Table II are presented the same data referent to the revaccinated group.

TABLE I

<table>
<thead>
<tr>
<th>Volunteers</th>
<th>Day</th>
<th>0</th>
<th>3</th>
<th>7</th>
<th>10</th>
<th>14</th>
<th>21</th>
<th>28</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV</td>
<td>R Ag</td>
<td>0.75</td>
<td>1.19</td>
<td>2.0</td>
<td>9.78</td>
<td>12.07</td>
<td>11.45</td>
<td>6.25</td>
<td>3.56</td>
</tr>
<tr>
<td></td>
<td>C Ag</td>
<td>0.65</td>
<td>1.03</td>
<td>1.50</td>
<td>3.32</td>
<td>3.79</td>
<td>2.32</td>
<td>1.40</td>
<td>1.28</td>
</tr>
<tr>
<td>CRZ</td>
<td>R Ag</td>
<td>1.95</td>
<td>1.70</td>
<td>3.53</td>
<td>7.68</td>
<td>5.98</td>
<td>2.49</td>
<td>2.83</td>
<td>2.51</td>
</tr>
<tr>
<td></td>
<td>C Ag</td>
<td>1.23</td>
<td>1.88</td>
<td>1.94</td>
<td>1.38</td>
<td>1.81</td>
<td>1.55</td>
<td>1.42</td>
<td></td>
</tr>
<tr>
<td>MHA</td>
<td>C Ag</td>
<td>1.25</td>
<td>1.52</td>
<td>0.80</td>
<td>0.93</td>
<td>1.09</td>
<td>1.55</td>
<td>1.63</td>
<td>1.62</td>
</tr>
<tr>
<td></td>
<td>R Ag</td>
<td>1.26</td>
<td>1.48</td>
<td>5.40</td>
<td>8.35</td>
<td>10.47</td>
<td>8.05</td>
<td>4.51</td>
<td>3.0</td>
</tr>
</tbody>
</table>

This group showed positive results to R Ag earlier than the primo-vaccinated group and with higher indices. Three out of the nine volunteers tested at day zero were already positive and three days after the booster dose all indices were higher than 2.5. Within this group response had a maximum at 21^{st} day, persisted at high levels, up to the 35^{th} day and all, except one, were still positive 110 days after the booster, when the last assay was carried out. The revaccinated group showed also positive responses to C Ag, although with indices much lower than those obtained with R Ag.

Figure 1 represents the evolution of the mean indices of each group obtained in the presence of R Ag and C Ag.

![Fig. 1 — Evolution of average lymphoblastic transformation indices in antirabies vaccination and revaccination (R-Ag: rabies antigen; C-Ag: control rabies antigen).](image-url)
TABLE II
Lymphoblastic transformation indices (LTI) obtained in whole blood cultures of revaccinated persons. Indices are expressed for both rabies antigens (R-Ag) and control antigens (C-Ag)

<table>
<thead>
<tr>
<th>Day</th>
<th>0</th>
<th>3</th>
<th>7</th>
<th>10</th>
<th>14</th>
<th>21</th>
<th>28</th>
<th>35</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volunteers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JBFS</td>
<td>R Ag</td>
<td>1.47</td>
<td>2.35</td>
<td>2.18</td>
<td>5.38</td>
<td>6.28</td>
<td>5.82</td>
<td>3.20</td>
<td>2.43</td>
</tr>
<tr>
<td></td>
<td>C Ag</td>
<td>1.65</td>
<td>2.28</td>
<td>1.77</td>
<td>1.98</td>
<td>2.40</td>
<td>2.23</td>
<td>2.68</td>
<td>1.58</td>
</tr>
<tr>
<td>DLPS</td>
<td>R Ag</td>
<td>1.9</td>
<td>11.97</td>
<td>16.75</td>
<td>NR</td>
<td>7.50</td>
<td>5.61</td>
<td>5.38</td>
<td>6.12</td>
</tr>
<tr>
<td></td>
<td>C Ag</td>
<td>1.48</td>
<td>2.49</td>
<td>4.30</td>
<td>3.41</td>
<td>2.49</td>
<td>2.45</td>
<td>2.12</td>
<td>1.29</td>
</tr>
<tr>
<td>PCSS</td>
<td>R Ag</td>
<td>1.45</td>
<td>2.88</td>
<td>5.18</td>
<td>7.12</td>
<td>12.50</td>
<td>19.19</td>
<td>14.78</td>
<td>8.45</td>
</tr>
<tr>
<td></td>
<td>C Ag</td>
<td>1.08</td>
<td>2.31</td>
<td>2.31</td>
<td>2.58</td>
<td>2.72</td>
<td>4.12</td>
<td>2.80</td>
<td>3.18</td>
</tr>
<tr>
<td>MSC</td>
<td>R Ag</td>
<td>1.92</td>
<td>2.64</td>
<td>5.38</td>
<td>7.53</td>
<td>7.72</td>
<td>5.91</td>
<td>5.04</td>
<td>6.15</td>
</tr>
<tr>
<td></td>
<td>C Ag</td>
<td>1.60</td>
<td>2.62</td>
<td>2.94</td>
<td>2.53</td>
<td>3.01</td>
<td>2.34</td>
<td>1.98</td>
<td>1.13</td>
</tr>
<tr>
<td>PJARO</td>
<td>R Ag</td>
<td>2.45</td>
<td>4.70</td>
<td>8.83</td>
<td>15.18</td>
<td>12.35</td>
<td>9.82</td>
<td>7.80</td>
<td>6.31</td>
</tr>
<tr>
<td></td>
<td>C Ag</td>
<td>1.81</td>
<td>2.13</td>
<td>3.93</td>
<td>4.34</td>
<td>3.65</td>
<td>3.13</td>
<td>2.24</td>
<td>1.58</td>
</tr>
<tr>
<td>SCM</td>
<td>R Ag</td>
<td>4.27</td>
<td>5.53</td>
<td>6.34</td>
<td>10.99</td>
<td>12.15</td>
<td>12.08</td>
<td>8.35</td>
<td>6.42</td>
</tr>
<tr>
<td></td>
<td>C Ag</td>
<td>1.84</td>
<td>2.02</td>
<td>3.38</td>
<td>5.14</td>
<td>4.42</td>
<td>5.70</td>
<td>3.30</td>
<td>2.65</td>
</tr>
<tr>
<td>EADP</td>
<td>R Ag</td>
<td>2.89</td>
<td>6.91</td>
<td>9.28</td>
<td>12.13</td>
<td>13.95</td>
<td>7.02</td>
<td>10.16</td>
<td>6.35</td>
</tr>
<tr>
<td></td>
<td>C Ag</td>
<td>1.43</td>
<td>2.33</td>
<td>3.60</td>
<td>2.93</td>
<td>4.50</td>
<td>3.82</td>
<td>2.55</td>
<td>2.24</td>
</tr>
<tr>
<td>CMA</td>
<td>R Ag</td>
<td>ND</td>
<td>12.20</td>
<td>14.15</td>
<td>16.18</td>
<td>22.34</td>
<td>21.18</td>
<td>16.08</td>
<td>12.06</td>
</tr>
<tr>
<td></td>
<td>C Ag</td>
<td>4.52</td>
<td>4.85</td>
<td>6.30</td>
<td>6.52</td>
<td>7.21</td>
<td>5.29</td>
<td>4.81</td>
<td>2.08</td>
</tr>
<tr>
<td>ELBC</td>
<td>R Ag</td>
<td>1.37</td>
<td>2.82</td>
<td>20.36</td>
<td>38.16</td>
<td>30.07</td>
<td>28.45</td>
<td>18.12</td>
<td>8.14</td>
</tr>
<tr>
<td></td>
<td>C Ag</td>
<td>1.40</td>
<td>2.21</td>
<td>4.91</td>
<td>5.85</td>
<td>6.00</td>
<td>3.30</td>
<td>2.78</td>
<td>2.48</td>
</tr>
<tr>
<td>MELS</td>
<td>R Ag</td>
<td>ND</td>
<td>8.63</td>
<td>24.18</td>
<td>34.11</td>
<td>37.82</td>
<td>56.91</td>
<td>40.38</td>
<td>29.40</td>
</tr>
<tr>
<td></td>
<td>C Ag</td>
<td>2.64</td>
<td>4.35</td>
<td>6.07</td>
<td>6.21</td>
<td>11.43</td>
<td>8.45</td>
<td>7.83</td>
<td>4.25</td>
</tr>
<tr>
<td>JL</td>
<td>R Ag</td>
<td>1.43</td>
<td>3.79</td>
<td>4.94</td>
<td>8.32</td>
<td>18.29</td>
<td>32.15</td>
<td>32.26</td>
<td>28.40</td>
</tr>
<tr>
<td></td>
<td>C Ag</td>
<td>1.68</td>
<td>1.36</td>
<td>2.20</td>
<td>2.32</td>
<td>2.95</td>
<td>4.63</td>
<td>3.72</td>
<td>3.43</td>
</tr>
</tbody>
</table>

ND = not done

DISCUSSION

It was demonstrated a clear secondary cellular immune response in humans receiving a booster dose of the Fuenzalida & Palacios vaccine.

The response, evaluated by lymphoblastic transformation of peripheral lymphocytes in the presence of rabies antigen was positive in all individuals since the third day after the booster dose and remained so up to the 110th day in 10 out of the 11 volunteers under study.

The response of the revaccinated group came earlier, was more intense and lasted longer than the response of the primo-vaccinated group. However, the revaccinated group showed CMI to nervous system components (C-Ag) with relatively high indices, which was not observed in the primo-vaccinated group.

The development of CMI to C-Ag might be related to post-vaccine accidents which are known to be more frequent in revaccinated persons and seem to be due to immune response to these antigens 1,2,15,17.

CMI against R-Ag was detectable before the booster dose in three out of nine revaccinated volunteers one of them (SCM) showing a relatively high index (LTI of 4.25). This group consisted of technicians who work at a rabies diagnosis laboratory and had already been submitted to several revaccinations before this study.

Although there are some references on the occurrence of CMI in human antirabies we were not able to find any study about CMI in human revaccination, in the literature.

We observed a rather large fluctuation in the intensity of CMI presented by the different
volunteers of the revaccinated group. Although
the data we collected do not provide us an ex-
planation for that, there are some aspects we
consider to be of importance and to deserve
a closer look in the future: differences in the
individual antibody levels at the time of boost-
er administration; number and schedules of
revaccination each person was submitted;
differences in the time lapsed between last re-
vaccination and the beginning of the study; va-
riations in the individual response to rabies
antigen.

Additional studies are needed not only to
improve our knowledge on the occurrence of
CMI in antirabies vaccination and revaccina-
tion, but also on the role played by CMI in the
prevention of disease development.

RESUMO

Resposta imune mediada por células na re-vac-
inação anti-rábica humana.

Foi estudada a ocorrência de resposta imu-
ne celular na re-imunização anti-rábica huma-
na.

Usou-se a vacina Fuenzalida & Palációs a
qual é rotineiramente usada no Brasil.

A resposta imune celular foi avaliada pelo
índice de transformação blástica obtido em
cultura de sangue total, na presença de anti-
genó rábico e antígeno controle (sistema ner-
voso).

O grupo em estudo constitui-se de 11 vo-
luntários submetido a revacinação, enquanto
três outros, submetidos a primo-vacinação fo-
ram utilizados como grupo controle.

Detectou-se uma clara resposta imune ce-
lular secundária contra antígeno rábico em to-
dos os voluntários revacinados, cujas respos-
tas foram mais rápidas e mais intensas do que
as do grupo controle.

Observou-se também, resposta ao antígeno
controle em todos os indivíduos do grupo de
revacinados. No grupo de primovacinados, re-
posta ao antígeno controle foi fracamente ob-
vservada em somente um indivíduo.

ACKNOWLEDGEMENTS

The authors express their gratitude to the
"Instituto Butantan". São Paulo for providing
antirabies vaccines. This work was supported
by CNPq, CAPES and FINEP.

REFERENCES

1. APPELBAUM, E.; GREENBERG, M. & NELSON, J.
 — Neurological complications following antirabies vac-
2. ASSIS, J. L. — Acidentes neuroparalíticas das vacina-
3. ATANASIU, P.; BAHMANVAR, M.; BALTAZARD, M.;
 POX, J. P.; HABEL, K.; KAPLAN, M. M.; KISSLING,
 R. E.; KOMAROV, A.; KOPROWKI, H.; LEFINE, P.;
 PEREZ GALLARDO, F. & SHAFFER, M. — Rabies
 neutralizing antibody response to different schedules of
 serum and vaccine inoculations in non-exposed persons:
4. BAER, G. M. & CLEARY, W. F. — A model in mice
 for the pathogenesis and treatment of rabies. J. Infect.
5. BAER, G. M.; SHADDUCK, J. H.; MOORE, S. A.;
 YAGER, P. A. & BARON, S. S. — Successful prophy-
 laxis against rabies in mice and rhesus monkeys: the
 interferon system and vaccine. J. Infect. Dis., 136:
 205-206, 1975a.
6. BAER, G. M. & YAGER, P. A. — A mouse model for
 post exposure rabies prophylaxis: the comparative effi-
 cacy of two vaccines and antiserum administration.
7. BALTAZARD, M. & BAHMANVAR, M. — Essai prati-
 que du sérum antirabique chez les mordus par loups
8. BLANCOU, J.; ANDRAL, B. & ANDRAL, L. — A mo-
 del in mice for the study of the early death pheno-
 menon after vaccination and challenge with rabies
9. BLANCOU, J.; ANDRAL, L.; LAGRANGE, P. H. &
 TSANG, H. — Kinetics of different specific immuno-
 logical parameters after rabies vaccination in mice.
10. FUENZALIDA, E. & PALÁCIOS, R. — Rabies vaccine
 prepared from brains of infected sucking mice. Bol.
11. GARDNER, I.; BOWERN, N. A. & BLANDEN, R. V.
 — Cell-mediated cytotoxicity against ectromelia virus-
13. HABEL, K. — Vaccination and serum prophylaxis of
 rabies in man. In: INTERNATIONAL SYMPOSIUM ON

Recebido para publicação em 16/9/86.