PCR - BASED DIAGNOSIS TO EVALUATE THE PERFORMANCE OF MALARIA REFERENCE CENTERS

Silvia Maria DI SANTI(1), Karin KIRCHGATTER(1), Karen Cristina Sant’Anna BRUNIALTI(1), Alessandra Mota OLIVEIRA(1), Sergio Roberto Santos FERREIRA(1) & Marcos BOULOS(2)

SUMMARY

Although the Giemsa-stained thick blood smear (GTS) remains the gold standard for the diagnosis of malaria, molecular methods are more sensitive and specific to detect parasites and can be used at reference centers to evaluate the performance of microscopy. The description of the Plasmodium falciparum, P. vivax, P. malariae and P. ovale ssrRNA gene sequences allowed the development of a polymerase chain reaction (PCR) that had been used to differentiate the four species. The objective of this study was to determine Plasmodium species through PCR in 190 positive smears from patients in order to verify the quality of diagnosis at SUCEN’s Malaria Laboratory. Considering only the 131 positive results in both techniques, GTS detected 4.6% of mixed and 3.1% of P. malariae infections whereas PCR identified 19.1% and 13.8%, respectively.

KEYWORDS: Malaria; Diagnosis; Plasmodium; PCR; ssrRNA; Thick blood smear.

INTRODUCTION

One of the strategies to control malaria is the precise laboratorial diagnosis in order to treat positive cases appropriately. The gold standard to detect parasites in the blood is still the Giemsa-stained thick blood smear (GTS)32. When performed by qualified personnel, this technique presents some advantages, such as: differentiation among species/stages, observation of morphological changes caused by recent treatment, quantification and storage for long periods permitting posterior quality control44. Although easy to apply and cost-effective, this technique assumes that laboratories will have a certain infrastructure in place and it requires highly qualified professionals. Detecting from 10 to 50 parasites/µl, it has a reduced sensitivity1,14,29,43 depending on the qualification of the technician. Even in reference centers qualified to perform hemoscopic diagnosis, the GTS may not allow to differentiate plasmodia, whose morphology is similar to two or more species, as occurs in the four human plasmodia species. Although appropriate to the diagnosis in remote areas, these tests show a variation in sensitivity11,16,24,37. Furthermore, false-positive results can occur due to circulating antigens that are detected even after the parasitological clearance1 and to the presence of the rheumatoid factor in the plasma17.

The molecular diagnosis of malaria was created as a more sensitive and specific methodology to detect parasites. In 1989, the use of four species-specific oligonucleotides for the small sub-unit ribosomal RNA (ssrRNA) genes was reported; they were used in hybridization studies as probes for detection of all Plasmodium species in humans40. However, this methodology has disadvantages, such as presenting low sensitivity and using radioactive material for which special laboratory conditions are necessary15. Based on the ssrRNA genes description of P. falciparum4, P. vivax4, P. malariae13 and P. ovale40, a polymerase chain reaction (PCR) was developed to differentiate the four Plasmodium species in humans8. In order to improve the sensitivity of this methodology, a nested PCR was developed. This technique utilizes two genus-specific primers in a first amplification reaction and species-specific primers in a second reaction8.

In Brazil, the technique used to perform laboratorial diagnosis is the GTS, established as the gold standard. In 2002, in this country 350,000 cases were reported, 99.5% of which in the Amazon Basin, mainly due to P. vivax. Outside the Amazon, 1,635 cases were detected, 223 in São Paulo alone, where 74% of infections were caused by P. vivax, 23.3%...
by *P. falciparum* and 2.7% by *P. vivax* and *P. falciparum*. The Malaria Laboratory at SUCEN, the reference on diagnosis in the São Paulo State, detected 154 cases in 1998; 79.23% of the infections were caused by *P. vivax*, 18.83% by *P. falciparum* and 1.94% by both. In 1999, 122 cases were notified: 70.5% of *P. vivax*, 28.7% of *P. falciparum* and 0.8% of mixed infections. In 2000, of 105 cases, *P. vivax* was responsible for 65.7%, *P. falciparum* for 28.6%, *P. malariae* for 2.85% and *P. vivax* plus *P. falciparum* for 2.85% (Table 1). The objective of this study was to evaluate the diagnosis performed by the Malaria Laboratory of SUCEN that is responsible for the quality control of the exams carried out in the São Paulo State. Here, we used a semi-nested PCR with genus and species-specific primers for *São Paulo State*. Here, we used a semi-nested PCR with genus and that is responsible for the quality control of the exams carried out in the to evaluate the diagnosis performed by the Malaria Laboratory of SUCEN that is responsible for the quality control of the exams carried out in the São Paulo State. Here, we used a semi-nested PCR with genus and species-specific primers for *Plasmodium* ssrRNA genes²⁰, producing fragments of about 110 bp and individually identifying the four species of parasites. Such methodology is suitable to perform PCR with DNA template extracted by techniques that include boiling, which leads to DNA fragmentation, as the ones used on samples obtained from smears³⁰,³¹.

Table 1

<table>
<thead>
<tr>
<th>Year</th>
<th># of cases notified</th>
<th>Species detected (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>154</td>
<td>V (79.23)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F (18.83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V+F (1.94)</td>
</tr>
<tr>
<td>1999</td>
<td>122</td>
<td>V (70.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F (28.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V+F (0.8)</td>
</tr>
<tr>
<td>2000</td>
<td>105</td>
<td>V (65.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F (28.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M (2.85)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V+F (2.85)</td>
</tr>
</tbody>
</table>

GTS = Giemsa-stained thick blood smear; N = negative; V = *P. vivax*; F = *P. falciparum* and M = *P. malariae*.

MATERIAL AND METHODS

Study population - We considered GTS from the Malaria Laboratory archives collected between 1998 and 2000 (n = 381). For each year, 50% of the elements were selected by simple random sampling³. All selected smears (n = 190) were re-examined in an independent blind study by a qualified professional. The parasitemia were calculated considering the number of parasites/mm³ according to the Pan-American Health Organization³⁴. Five GTS with more than 10,000 parasites/mm³ were used for the standardization of the PCR in our laboratory. These slides were selected to avoid the misconception that negative results could be due to failure in the technique instead of being consequence of low parasitemia. Seven smears collected in 1994, 1995 and 1996 were processed to verify the technique’s efficiency years after its preparation. The patients were treated according to the GTS diagnosis, as proposed by SUCEN’s Malaria Therapy Manual³.

The Ethics Commission for Review of Research Projects of the “Hospital das Clínicas”, Medicine Faculty of the University of São Paulo (Research protocol # 555/00) approved this study.

DNA extraction - DNA was obtained as described³. Concisely, the material was scrapped from the GTS, and then re-suspended in 500 µl of 1% Saponin (Sigma, St. Louis, MO) in water. Samples were incubated on ice for 60 min, vortexed and centrifuged. The pellets were washed in PBS (pH 7.2) and 100 µl of a 5% (wt/vol) solution of Chelex®¹⁰0 (Bio-Rad, Hercules, CA) were added. After incubation at 56 °C for 15 min, the samples were vortexed and incubated at 100 °C for 10 min. After centrifugation, the supernatant was collected and stored at -20 °C until performing the PCR.

PCR amplification - The amplification of ssrRNA gene fragments of DNA extracted from smears was performed as described²⁰. Briefly, 5 µl of DNA were used to amplify the genus-specific fragments with primers P1 and P2. The reactions occurred in 20 µl, under the following conditions: 0.4 µM of P1 and P2, 125 µM of each dNTP, buffer (50 mM KCl, 10 mM Tris-HCl and pH 8.3), 1.5 mM MgCl₂ and 0.75 U of Taq polymerase. The amplification program consisted of 92 °C for 2 minutes, 35 cycles at 92 °C for 30 seconds and 60 °C for 90 seconds, and a final step of 5 minutes at 60 °C. For the amplification of the species-specific fragments, 2 µl of the product from the first reaction (1:50) were used with 1 µM of P1 and 1 µM F2, V1 or M1, 312.5 µM of each dNTP, buffer (50 mM KCl, 10 mM Tris-HCl, pH 8.3), 1.5 mM MgCl₂ and 0.75 U of Taq polymerase. The amplification program consisted of 92 °C for 2 minutes, 18 cycles at 92 °C for 30 seconds and 60 °C for 60 seconds, and a final step of 5 minutes at 60°C. The PCR fragments were separated by 2% agarose gel electrophoresis and stained with ethidium bromide. The PCR experiments, whose results were not in agreement with those from GTS, were re-assayed. All experiments were carried out in an isolated area, using filter tips to avoid cross-contamination.

RESULTS

Five smears collected in 1999 were used in the PCR standardization, three of which were positive for *P. vivax* and two for *P. falciparum* by the GTS method. The PCR results showed amplification in all samples, detecting a *P. vivax* and *P. falciparum* mixed infection and an infection by *P. malariae*, while GTS detected *P. vivax*. In order to verify the condition of the material years after the smears had been collected, seven samples collected between 1994 and 1996 were used, with amplification in all samples.

To analyze the performance of the diagnosis carried out by SUCEN’s Malaria Laboratory, a total of 190 smears was used, whose diagnosis by GTS detected 142 patients with *P. vivax*, 42 with *P. falciparum*, 02 with *P. malariae*, and 04 with *P. vivax* and *P. falciparum* mixed infections. Using PCR on material extracted from these smears, 38 samples had a negative result, 95 were positive for *P. vivax*, 26 for *P. falciparum*, 02 for *P. malariae*, 10 for *P. vivax* plus *P. falciparum*, 13 for *P. vivax* plus *P. malariae*, 01 for *P. falciparum* plus *P. malariae*, and 05 for *P. falciparum*, *P. vivax* plus *P. malariae*. Considering the results obtained after the GTS re-examination, of samples with negative PCR, 15 out of 38 were also negative in the second diagnosis by GTS and one was not re-evaluated by microscopy. From the remaining, 18 showed parasitemia below 2,000/mm³, three showed parasitemia between 2,000 and 4,000/mm³ and one showed parasitemia of 10,000/mm³. PCR and GTS results were compared taking into account only the 131 positive samples for both techniques. PCR identified 86 (65.6%) samples with *P. vivax*, 18 (13.7%) with *P. falciparum*, 02 (1.5%) with *P. malariae*, 9 (6.9%) with *P. vivax* plus *P. falciparum* and 3 (2.3%) with *P. falciparum* plus *P. malariae*.
parasitemias9, suggesting that the quantity of parasite DNA, another work, PCR was positive only in 71% of the smears with low examination, 85.6% of the smears were positive by PCR in our study. In the routine of training in the Malaria Laboratory leading to the lost of some material. Also, four GTS diagnosed originally as the presence of few band forms in the smear. Moreover, some smears were not re-examined.

The discrepancy observed between the first and second GTS examination could be explained by the fact that the smears were used in the routine of training in the Malaria Laboratory leading to the lost of some material. Also, four GTS diagnosed originally as the presence of few band forms in the smear. Moreover, some smears were not re-examined.

Considering the number of samples with positive GTS after re-examination, 85.6% of the smears were positive by PCR in our study. In another work, PCR was positive only in 71% of the smears with low parasitemias9, suggesting that the quantity of parasite DNA, proportionally to the GTS blood volume, could be below the PCR detection limit. When the same PCR protocol was used in GTS positive samples, comparable to the results obtained in another study with Brazilian samples, using primers to ssrRNA genes5. Although Plasmodium malariae is present in all Brazilian endemic regions, the widespread use of GTS makes it difficult to identify this parasite. Plasmodium malariae can be identified as P. vivax by using GTS, causing an unnecessary administration of primaquine. Several cases of diagnosis of P. vivax relapses could be a recrudescence due to P. malariae, since the reduced sensitivity to chloroquine of this parasite was already identified by our group (unpublished data) and also in Indonesia23. The high incidence of P. malariae found could indicate that these parasites have remained in the individual for a long period, as it has been already suggested23, instead of being the product of a recent infection.

Regarding the discrepancy found between the GTS and PCR diagnosis involving other species, we can presume that the mistaken identification of P. falciparum instead of P. vivax probably occurs due to the presence of young forms only, without evident Schüffner’s dots, leading to treatments without administration of primaquine, which consequently increases the relapse rate and sources of infection. On the other hand, cases where GTS did not detect the presence of P. falciparum had been mainly reported in patients taking chloroquine for the past 30 days33.

The high cost of diagnosis by PCR, linked to the required laboratorial infrastructure, makes its routine use difficult in laboratories. However, reference centers that are responsible for the quality control and frequently are asked to clarify specific situations, as the ones related to nosocomial infections31, blood banks and organ transplant units, can use this methodology.

RESUMO

Diagnóstico baseado em PCR para avaliar o desempenho decentros de referência em malária

Embora a gota espessa corada por Giemsa (GTS) permaneça o padrão ouro para o diagnóstico de malária, métodos moleculares são mais sensíveis e específicos para detectar parasitas e podem ser utilizados em centros de referência para avaliar o desempenho da microbiologia. A descrição das seqüências dos genes ssrRNA de Plasmodium falciparum,
Plasmodium, P. vivax e P. ovale permitiu o desenvolvimento de uma reação em cadeia da polimerase (PCR) que tem sido utilizada para diferenciar as quatro espécies. O objetivo deste estudo foi determinar as espécies em cadeia da polimerase (PCR) que tem sido utilizada para diferenciar da SUCEN e verificar a qualidade do diagnóstico realizado no Laboratório de Malária do Estado de São Paulo, Superintendência de Controle de Endemias, Secretaria de Estado da Saúde, enquanto o PCR identificou 19,1% e 13,8%, respectivamente.

ACKNOWLEDGEMENTS

We thank the workers of SUCEN’s Malaria Laboratory, for technical assistance.

REFERENCES

Received: 16 February 2004
Accepted: 6 July 2004