In vitro SYNERGISM OF SIMVASTATIN AND FLUCONAZOLE AGAINST Candida SPECIES

Everardo Albuquerque MENEZES(1), Antônio Alexandre de VASCONCELOS JÚNIOR(1), Carlla Lorena Façanha SILVA(2), Fábio Ximenes PLUTARCO(1), Maria da Conceição dos Santos Oliveira CUNHA(1) & Francisco Afrânio CUNHA(1)

SUMMARY

Systemic fungal infections are responsible for high mortality rates. Several species of fungi may be involved, but *Candida* spp. is the most prevalent. Simvastatin is used to lower cholesterol and also exhibits antifungal action. The aim of this study was to evaluate the synergistic action of simvastatin with fluconazole against strains of *Candida* spp. Susceptibility testing was performed according to protocol M27-A3, by broth microdilution method and the synergistic effect of simvastatin and fluconazole was calculated based on FICI (Fractional Inhibitory Concentration Index). Eleven strains were evaluated, and simvastatin showed a synergistic effect with fluconazole against 10 (91%) of the *Candida* spp. strains tested. Simvastatin may be a valuable drug in the treatment of systemic infections caused by *Candida* spp.

KEYWORDS: Simvastatin; Fluconazole; *Candida* spp.

INTRODUCTION

Candidemias are fungal infections that have high mortality rates and are responsible for increased hospital costs. The number of available antifungal agents for systemic use is rather limited, and isolation of strains of *Candida* spp. resistant to conventional antifungal drugs is increasingly common. New therapeutic strategies are needed to prevent the spread of resistance. Among these strategies we can highlight the search for new drugs and drug combinations with synergistic purpose. Statins are drugs used to treat hypercholesterolemia, but also have antifungal activity. Simvastatin inhibits the enzyme 3-hydroxy-3-methylglutaryl reductase (HMG-CoA) and reduces the level of intermediates from cholesterol synthesis. Yeasts use the same enzymatic pathway, but the final product is ergosterol. *In vitro* studies have demonstrated that simvastatin inhibits the growth of species of *Candida* spp. and may be useful in the treatment of candidemias.

The aim of this study was to evaluate the synergistic action between simvastatin and fluconazole against *Candida* spp. with elevated MICs for fluconazole.

MATERIALS AND METHODS

In all, 11 strains of *Candida* spp. were used (one *C. albicans*, five *C. tropicalis*, and five *C. parapsilosis*). The strains used were derived from clinical samples (nine from blood and two from urine). The strains were identified by biochemical, molecular and phenotypic methods.

In this study, we tested the antifungal activity of simvastatin alone and in combination with fluconazole. Simvastatin (Sigma-USA) was activated in an ethanol solution of NaOH (15% (vol/vol) and 0.25% (m/vol) NaOH) at 60 °C for one hour. The simvastatin solution was filtered and placed in a dessicator for 72 hours. Susceptibility testing was performed according to protocol M27-A3, by the RPMI broth microdilution method (Cultilab-São Paulo) (pH 7.0) buffered with MOPS (morpholinepropanesulfonic acid) (Sigma-USA). Fluconazole (Sigma-USA) and simvastatin were dissolved in water and butanol (Sigma-USA), respectively. To assess the synergistic potential of the drugs, the concentration of fluconazole was maintained unchanged at 4 μg/mL and simvastatin ranged from 0.25 to 128 μg/mL. The microdilution plates were incubated at 35 °C and read visually after 24 hours and 48 hours of incubation. The MIC was considered as the lowest concentration of drugs that caused a 90% reduction in growth compared with the control strain. *C. parapsilosis* ATCC 22019 and *C. krusei* ATCC 6258 were used as control strains. The synergistic effect of simvastatin and fluconazole was calculated based on FICI (Fractional Inhibitory Concentration Index). The data were interpreted according to the value of FICI: FICI ≤ 0.5-synergism (SYN); 0.5< FICI < 4.0 - indifference (IND); and FICI ≥ 4.0 - antagonism (ANT).

RESULTS

Table 1 shows the results of the FICIs (24h and 48h of incubation) for the strains tested. As can be verified, only one strain appeared as indifferent. In 10 strains, (91%) there was a strong synergistic effect demonstrated by the FICI calculation. FICI determination at 24 h...
might be better than longer incubation periods in detecting significant pharmacodynamic interactions. In our study there was no difference in comparing the results with 24 and 48 h of incubation.

We observed that when simvastatin was associated with fluconazole at a fixed concentration (4 μg/mL), there was a reduction of the MICs. Several studies show the interaction of statins with antifungals.

DISCUSSION

The FICI was ≤ 0.5, thus proving the synergy. LIU et al. (2009) observed that simvastatin inhibits the formation biofilm in *C. albicans*. These same authors observed that the probable mechanism of this action is due to the interference in the ergosterol cycle. In our study, we did not elucidate the mechanism of action, but hypothesized that the mechanism of action is due to the action at two distinct points of the ergosterol cycle.

In a study conducted with strains of *C. albicans* and *C. glabrata*, evaluating the synergism between simvastatin and fluconazole, an additive effect was observed. In our study, the results were different; we found a synergistic effect. This discrepancy may be due to the fact that the strains used in our study were strains with elevated MICs for fluconazole.

Studies have shown the usefulness of statins in the treatment of fungal infections; however, more studies are needed to confirm the synergism.

In our study, we showed that simvastatin has *in vitro* synergistic activity with fluconazole against strains with elevated MICs for fluconazole. Simvastatin may be a valuable drug to the treatment of fungal infections mainly caused by strains of *Candida* spp. resistant to fluconazole. However, we know these are preliminary data and that the dosage and duration of treatment in humans should be carefully studied. Therefore, it is important that further studies, such as molecular studies and animal tests, be made. This is the first study with strains that have a degree of resistance. We also know that future studies with a larger number of isolates and resistant isolates are of great importance. Our studies will continue in order to elucidate the mechanism of action and effects of simvastatin.

RESUMO

Sinergismo in vitro de simvastatina e fluconazol contra espécies de Candida

Infecções fúngicas sistêmicas são responsáveis por altas taxas de mortalidade. Várias espécies de fungos podem estar envolvidas, mas *Candida* spp é a mais prevalente. A simvastatina é usada para diminuir o colesterol e também exibe ação antifúngica. O objetivo deste estudo foi avaliar a ação sinérgica de simvastatina e fluconazol contra cepas de *Candida* spp. O teste de susceptibilidade foi realizado de acordo com o protocolo M27-A3, pelo método de micro diluição em caldo e o efeito sinérgico de simvastatina e fluconazol foi calculado com base no ICIF (Índice de Concentração Inibitória Fracionada). Onze cepas foram avaliadas, e a simvastatina mostrou um efeito sinérgico com o fluconazol em dez (91%) das cepas de *Candida* spp. Simvastatina pode ser uma droga valiosa no tratamento de infecções sistêmicas causadas por *Candida* spp.

ACKNOWLEDGEMENTS

CNPQ.
REFERENCES

Received: 23 March 2012
Accepted: 23 April 2012
The Library of the São Paulo Institute of Tropical Medicine (IMTSP Library) was created on January 15, 1959 in order to serve all those who are interested in tropical diseases. To reach this objective, we select and acquire by donation and / or exchange appropriate material to be used by researchers and we maintain interchange between Institutions thorough the Journal of the São Paulo Institute of Tropical Medicine, since the Library has no funds to build its own patrimony.

The IMTSP Library has a patrimony consisting of books, theses, annals of congresses, journals, and reference works.

The collection fo journals existing in the Library can be verified through the USP – Bibliographic Database – OPAC – DEDALUS http://dedalus.usp.br:4500/ALEPH/eng/USP/USP/DEDALUS/start of the USP network.