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Abstract. In this expository paper we discuss Bowen’s thermody-
namic formalism for conformal repellers, and possible connections with
the theory of asymptotic Teichmüller spaces and uniformly asymptot-
ically conformal dynamical systems.

Introduction

Our purpose in this expository article is to illustrate how a physical
theory can be used to prove a mathematical result, thereby reversing the
usual implication arrow Math −→ Physics. This will be consistent with
D. Ruelle’s well-known assertion that our mathematics is “natural” [23].

Physical motivation. The physical theory at the base of the (reversed)
arrow is statistical mechanics. The macroscopic laws of thermodynam-
ics were established by Carnot, Clausius and Kelvin from early to mid-
nineteenth century. The branch of Physics known today as statistical me-
chanics has the reductionist goal of deriving such macroscopic laws from
purely microscopic principles, starting from the usual laws of classical me-
chanics. The basic paradigm is to replace the Newtonian study of the
motion of individual particles, which is highly impractical for large (macro-
scopic) systems to say the least, by measurable statistical averages.

The physical foundations of statistical mechanics were laid down pri-
marily by L. Boltzmann and J. W. Gibbs. Mathematicians from Poincaré
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onwards worried about providing proper mathematical foundations for sta-
tistical mechanics. The result of their efforts was ergodic theory, today a
very fruitful branch of Dynamical Systems. Various key concepts such as
ergodicity (Birkhoff, von Neumann, Khinchin), measure-theoretic entropy
(Kolmogorov, Sinai, Bowen), Markov partitions, symbolic coding, topolog-
ical entropy (Adler, Konheim, McAndrew, Bowen), Gibbs measures and
equilibrium states (Bowen, Ruelle, Sinai) – these and more were either in-
spired by or direct generalizations of the physical notions of entropy, Gibbs
ensembles, pressure, etc.

A mathematical problem. The story we wish to tell, like many other
stories in modern Mathematics, starts with H. Poincaré. In his Mémoires
sur les groupes Kleinéens (1883), Poincaré observed that if the (finitely
many, say) generators of a Fuchsian group Γ ⊂ PSL(2,C) containing no
parabolic elements are slightly perturbed, the resulting Kleinian group G

will be quasi-Fuchsian, i.e. it will possess an invariant region ∆ ⊂ Ĉ

conformally equivalent to a disk. In a deep insight, all the more remarkable
given the absence of computational evidence, Poincaré conjectured that
whenever ∂∆ is not a circle, it must be a non-rectifiable Jordan curve.
This conjecture was verified by Fricke and Klein at the end of the nineteenth
century.

Despite great progress in the hyperbolic geometry and the theory of
Fuchsian and Kleinian groups in the early part of the twentieth century,
the study of the microscopic structure of limit sets of quasi-Fuchsian groups
remained dormant for several decades.

In 1948, G. Mostow proved the following result. Since the boundary ∂∆
of the invariant region of a Fuchsian group as above is a Jordan curve,
one can consider the Riemann maps of the inside and outside of ∂∆, and
both maps extend homeomorphically to the curve itself. Hence, taking the
composition of one of them with the inverse of the other, we get a self-
homeomorphism h of the unit circle. Mostow’s theorem can be stated as
follows.

Theorem 1 (Mostow). If h is absolutely continuous, then it must be a
Möbius transformation.

This is an example of what is known as geometric rigidity . See figure 1,
where h = (h−|∂∆)−1 ◦ h+|∂D.

Then, in 1978, R. Bowen went much further than Poincaré, Fricke and
Klein or Mostow, proving that ∂∆, if not a circle, always has Hausdorff
dimension greater than 1. The way Bowen proved his result is really the
highlight of our story. He used several of the above mentioned key ideas
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Figure 1. Mostow’s theorem

of ergodic theory that were born out of thermodynamics and statistical
mechanics.

Although circumscribed to a situation where one has conformal expan-
sion, this story is very emblematic, and Bowen’s work gave rise to a well
developed subject. Today the relationship between ergodic ideas such as
equilibrium states and various properties of a dynamical system such as the
Hausdorff dimension of the non-wandering set, or its conformal dimension
when the system is conformal, is reasonably well understood in a variety of
contexts, from conformal dynamics to non-uniformly hyperbolic dynamics.
See [2] for the latter, and [26] for the former, and the references therein.

We end this introduction with the following remark. In the context
of unimodal maps, the problem of calculating the Hausdorff dimension of
attractors such as the Feigenbaum Cantor set is sometimes solvable if one
manages to replace the original map, which has critical points, by another
map which is expanding and has the same invariant set (this can be done
explicity for the Feigenbaum case). To the best of our knowledge, this
has not been done explicitly for infinitely renormalizable unimodal maps
with other combinatorics besides Feigenbaum. Coarser estimates on the
Hausdorff dimension in these cases can be achieved by other means, as
shown in [8, pp. 760-62].
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1. Conformal repellers

The ideas and methods used by Bowen in [4] are considerably more
general than the case of quasi-Fuchsian groups. They can be used to study
a wider class of dynamical systems, the so-called conformal repellers. Here
is a formal definition, suitable for our purposes.

Definition 1. A conformal repeller consists of an open set U ⊂ Ĉ, a com-
pact subset K ⊂ U and a pseudo-semigroup G of conformal transformations

g : Ug → Ĉ, where each Ug ⊂ U is open, such that

(a) the set K is G-invariant: GK ⊂ K;
(b) for each g ∈ G, the restriction g|K∩Ug is expanding, i.e. |g′(x)| ≥

λ > 1 for all x ∈ K ∩ Ug.
The constant λ is uniform (that is to say, independent of g).

We will also assume, in order to facilitate our exposition, that the action
of G on K is transitive (i.e. there exists x0 ∈ K whose orbit Gx0 is dense in
K). Let us present a few examples. A common feature of all the examples
bellow is that they can be given suitable finite Markov partitions, with
which their dynamics can be nicely encoded. Such encoding will only be
discussed for one of the examples, that of Cantor repellers.

1.1. Co-compact Fuchsian groups. The first example is, not surpris-
ingly, the situation studied by Poincaré. Let Γ ⊂ PSL(2,C) be a co-compact
Fuchsian group with invariant disk equal to the unit disk D. By co-compact
we mean that the quotient D/Γ is compact. This implies in particular that
Γ contains no parabolic elements and is finitely generated. We can find
a finite list g1, g2, . . . , gn ∈ Γ of hyperbolic generators and a fundamental
domain ∆ b D for the action of Γ on D which is a 2n-gon with geodesic
sides. These sides are identified in pairs by the gi’s. The images of ∆ by
the various elements of Γ produce a tiling of D, and the limit set of Γ is
equal to ∂D. Using these facts, one can prove that, given any two distinct
points a, b ∈ ∂D and ε > 0, there exist p, q ∈ ∂D with |p − a| < ε and
|q − b| < ε, and a hyperbolic element h ∈ Γ such that p is the expanding
fixed point and q is the attracting fixed point of h. From this, it is not
difficult to find finitely many hyperbolic elements h1, h2, . . . , hm ∈ Γ, and
disks D1,D2, . . . ,Dm, each centered at the corresponding expanding fixed
point of hi such that

m⋃

j=1

Dj ⊃ ∂D ,

and such that the pseudo semigroup generated by {h1|D1 , h2|D2 , . . . , hm|Dm}
satifies the definition of conformal repeller, with K = ∂D. The details are
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left as an exercise to the reader. For background on Fuchsian groups, see
[3] or [17].

1.2. Schottky groups. A Schottky group yields another example of con-

formal repeller. Let D1,D2, . . . ,D2m ⊂ Ĉ be 2m pairwise disjoint closed
disks in the sphere, and for each 1 ≤ i ≤ m let gi ∈ PSL(2,C) be a linear
fractional transformation mapping the interior of Di onto the exterior of
Di+n. Then the gi’s freely generate a subgroup Γ ⊂ PSL(2,C), which is
called a Schottky group. The limit set of this group is easily seen to be
a Cantor set. Just as in the previous example, one can find inside such a
Schottky group a semigroup whose action will be expanding when restricted
to the limit set.

1.3. Jordan repellers. Let U, V ⊂ Ĉ be two nested annuli, with U ⊂ V ,

with none of the components of Ĉ \ U contained in V . Let f : U → V be
a holomorphic, degree d covering map. We look at the invariant, compact
set Jf = ∩n≥0f

−n(V ) ⊂ U . Replacing f by a suitable power if necessary,
we can always assume that f |Jf is expanding, so that once again we have a
conformal repeller. In this case it is not difficult to see that Jf is a Jordan
curve. This type of repeller is called a Jordan repeller. Here is a family of
explicit examples. We can start with the polynomial map f(z) = z2, take
an annular neighborhood V of the unit circle, and then take U = f−1(V ).
Then we perturb the map slightly to f(z) = z2 + c, with c small. The
corresponding Jf is nothing but the Julia set of f , and it is a Jordan
curve. Bowen’s results imply that this Jordan curve always has Hausdorff
dimension > 1 if c 6= 0.

1.4. Cantor repellers. Another example is provided by Cantor repellers,
those in which, as the name suggests, the invariant set is a Cantor set. Here
is the formal definition.

Definition 2. A Cantor repeller consists of two open sets U, V ⊆ C and a
holomorphic map f : U → V satisfying the following conditions:

(1) The domain U is the union of Jordan domains U1, U2, . . . , Um (for
some m ≥ 2) having pairwise disjoint closures;

(2) The co-domain V is the union of Jordan domains V1, V2, . . . , VM
(for some M ≥ 1) having pairwise disjoint closures;

(3) For each i ∈ {1, 2, . . . ,m} there exists j(i) ∈ {1, 2, . . . ,M} such
that f |Ui

maps Ui conformally onto Vj(i);

(4) We have U ⊂ V ;
(5) The limit set Jf = ∩n≥0f

−n(V ) has the locally eventually onto prop-
erty.

São Paulo J.Math.Sci. 4, 1 (2010), 65–91



70 Edson de Faria

Remark 1. Note that the limit set Jf of a Cantor repeller is a compact,
perfect and totally disconnected set, i.e. a Cantor set, hence the name.

Proposition 1. Every Cantor repeller is a conformal repeller.

Proof. All we have to do is to verify that the expansion property in the
definition of conformal repeller holds true for a Cantor repeller. We exploit
hyperbolic contraction (Schwarz’s lemma). If Ω ⊂ C is simply connected
domain, we denote by dΩ its hyperbolic metric.

Each Ui is compactly contained in Vk(i) for some k(i) ∈ {1, 2, . . . ,M}.
The inclusion Ui → Vk(i) is a contraction of the corresponding hyperbolic
metrics. In other words, there exists λi > 1 such that for all z, w ∈ Ui we
have

dUi
(z, w) ≥ λidVk(i)(z, w) .

Let λ = min{λi : 1 ≤ i ≤ m} > 1. If z, w ∈ Ui and f(z), f(w) ∈ Vj then,
since f maps Ui conformally onto Vj , we have

dVj (f(z), f(w)) = dUi
(z, w) ≥ λdVk(i)(z, w) .

Using this inequality and an easy inductive argument (exercise), we see
that if z, w ∈ Ui are in the same connected component of f−n(Vj) for some
j, then

dVj (f
n(z), fn(w)) ≥ λndVk(i)(z, w) . (1)

Now suppose that z, w are points in K1 = Jf ∩ Vk(i). Then fn(z), fn(w) ∈
K2 = Jf ∩ Vj . Since K1 and K2 are compact, the hyperbolic metrics dVk(i)
and dVj over K1 and K2 respectively are both comparable to the Euclidean
metric. Hence there exists C > 0 depending on Vk(i), Vj ,K1 and K2 such
that the inequality (1) translates into

|fn(z)− fn(w)| ≥ Cλn|z − w| . (2)

Dividing both sides of (2) by |z − w|, fixing z and letting w → z, we get
|(fn)′(z)| ≥ Cλn, as we wanted.

�

The topological dynamics of a Cantor repeller is fairly easy to describe.
First, we give a symbolic code for f in the limit set. We define the transition
matrix of (f, Jf ) as follows. Let Ji = Jf ∩ Ui for i = 1, 2, . . . ,m, and let
the square matrix A = (aij)m×m be such that aij = 1 if f(Ji) ⊇ Jj and
aij = 0 otherwise. Now let ΣA ⊆ {1, 2, . . . ,m}N be the subspace of the
space of infinite one-sided sequences in the m symbols 1, 2, . . . ,m defined
by the condition that x = (xn)n∈N ∈ ΣA if an only if axnxn+1 = 1 for all n.
We endow the set {1, 2, . . . ,m} with the discrete topology and the cartesian
product space {1, 2, . . . ,m}N with the product topology, which makes it a
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compact space. Hence ΣA is also a compact (Hausdorff, hence metrizable)
space. It is invariant under the shift map σ : {1, 2, . . . ,m}N ←↩, given
by σ((xn)n∈N) = (xn+1)n∈N. The dynamical system (ΣA, σ) is called the
subshift of finite type associated to the transition matrix A.

As an example, figure 2 shows a Cantor repeller with transition matrix

A =




1 1 1 0 0
0 0 0 1 1
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1




Theorem 2. The map f restricted to its limit set Jf is topologically con-
jugate to the subshift (ΣA, σ) with transition matrix A.

Proof. Given x ∈ Jf , we know that for each n ≥ 0 there exists a unique
in ∈ {1, 2, . . . ,m} such that fn(x) ∈ Jin . We define the itinerary of x to
be the sequence θx = i0i1 · · · in · · · ∈ {1, 2, . . . ,m}N. Note that ainin+1 = 1
for all n ≥ 0, so that in fact θx ∈ ΣA. Hence we have a well-defined map
h : Jf → ΣA given by h(x) = θx. We leave to the reader the task of proving
that h is the desired conjugacy. �

When filling in the blanks in the above proof, the reader will not fail
to notice the following. Let us agree to call a finite sequence i0i1 · · · in ∈
{1, 2, . . . ,m}n+1 admissible if aikik+1

= 1 for k = 0, 1, . . . , n − 1. The con-

nected components of f−(n+1)(V ) can be labeled inductively by admissible
sequences. Indeed, assuming that the components of f−n(V ) have already
been labeled, and given an admissible sequence i0i1 · · · in, let Ui0i1···in be

the unique connected component of f−(n+1)(V ) contained in Ui0i1···in−1 with
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Figure 2. A Cantor repeller

São Paulo J.Math.Sci. 4, 1 (2010), 65–91



72 Edson de Faria

f

F

S1

U ′

V ′

U

V

h Kf

Figure 3. The Ghys-Sullivan construction.

the property that f(Ui0i1···in) = Ui1i2···in . Each open set Ui0i1···in is a topo-
logical disk, because the open sets Ui at the base of the induction already
are. The reader will see that if x ∈ Jf has itinerary θx = i0i1 · · · in · · · , then
in fact

{x} =
∞⋂

n=0

Ui0i1···in .

This happens because the diameters of the topological disks Ui0i1···in shrink
to zero as n→∞.

For each admissible sequence i0i1 · · · in, we define Ji0i1···in = Jf ∩Ui0i1···in
and call it the cylinder with prefix i0i1 · · · in. This clearly agrees with the
image of the set of all sequences in ΣA with prefix i0i1 · · · in under h−1,
where h is the conjugacy built in theorem 2 above. The set of all such
cylinders (with prefix given by a sequence of length n+ 1) will be denoted
by An.

1.5. Quadratic-like maps. Conformal repellers can be useful even in sit-
uations where there is no obvious expansion. It may happen, for instance,
that the non-wandering set of our dynamical system contains critical points.
This is the case with quadratic-like maps having connected filled-in Julia
sets.

Definition 3. Let U, V ⊂ Ĉ be topological disks with U ⊂ V , and let
f : U → V be a holomorphic branched covering map onto V with a unique
quadratic critical point c ∈ U (f ′(c) = 0, f ′′(c) 6= 0). We say that f is a
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quadratic-like map. Its filled-in Julia set is

Kf =
⋂

n≥0

f−n(V ) ,

which is easily seen to be a compact and f -invariant set.

The theory of quadratic-like maps was started by Douady and Hubbard
and is a very well developed subject, see for instance [11]. When c ∈ Kf ,
it is easy to see that Kf is connected: indeed, in this case f−n(V ) is a
topological disk for all n ≥ 0, and since such disks are nested, their inter-
section Kf is connected. The dynamics in the filled-in Julia set is certainly
not expanding, but we can still extract from it an expanding dynamical
system – a conformal repeller – by means of the following construction due
to Ghys and Sullivan (see figure 3). Since Kf is connected, its complement

Ĉ\Kf is simply connected. Consider the Riemann map h : Ĉ\D→ Ĉ\Kf ,
normalized so that, say, h(∞) = ∞ and h′(∞) = 1. Consider the annuli
V ′ = h−1(V ) and U ′ = h−1(U) and let F : U ′ → V ′ be the map given by
F = h−1 ◦ f ◦ h. This map is holomorphic, it has no critical points, and
it is a covering map of degree 2. Moreover, F extends continuously to the
unit circle S1 = ∂U ′ ∩ ∂V ′ = ∂D.

Now we can consider the reflections of both U ′ and V ′ across ∂D, that
is to say, their images U ′′ and V ′′ under geometric inversion about the unit
circle, and extend F to a map from the open annulus U∗ = U ′ ∪S1 ∪U ′′ to
the open annulus V∗ = V ′ ∪S1 ∪ V ′′ using the Schwarz reflection principle.
This map which we still denote by F is a holomorphic double covering of U∗

onto V∗, and its restriction to S1 is a degree two real-analytic endomorphism
of the circle. Thus we see that F : U∗ → V∗ defines a Jordan repeller with
limit set K = S1.

1.6. Holomorphic pairs. In [6], the author developed a theory of holo-
morphic commuting pairs, conformal dynamical systems akin to quadratic-
like maps suitable for the study of universality properties of critical circle
maps. An analogue of the Ghys-Sullivan construction is performed in that
paper, and the resulting repeller turns out to be a Cantor repeller of a very
specific topological type; see [6] for details.

2. Thermodynamics and statistical mechanics

Let us digress a bit into showing how, in a very simple context, thermody-
namics is explained by statistical mechanics. We avoid the full reductionist
step of explaining these statistical considerations from the laws of classical
mechanics, as this would take us too far afield.
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As we stated in the introduction, the macroscopic laws of thermody-
namics were discovered by Carnot, Clausius and Kelvin (among others).
We want to explain the two most important of these laws from statistical
principles. Our arguments here will be for the most part heuristic, but
the reader can rest assured that they can be made rigorous. For rigorous
treatments, see [21] or [19].

Consider a very dilute (or ideal) gas, i.e. a gas in which the interac-
tions between its constituent molecules are so weak that they can be safely
ignored. We shall ignore external forces as well. Following tradition, we
denote by V its volume, by P its pressure, by U its internal (or total) en-
ergy, and by T its temperature. These are all macroscopic properties of
the gas. The idea of thermal equilibrium is hereto taken for granted, and
it leads to the so-called zeroth law which will not be discussed.

If an amount δQ of heat is furnished to the gas, part of this energy
adds to its internal energy, and part is converted into work as the gas
expands. This is the contents of the first law , and it is simply the principle
of conservation energy. In infinitesimal form, the first law can be written

dU = δQ− P dV .

There is no reason why δQ should be the exact differential of a func-
tion. However, the second law postulates the existence of a function S =
S(V, P, · · · ) called entropy whose differential dS is equal to δQ divided by
the temperature, in other words

dS =
δQ

T
.

These two laws, despite their simplicity, are quite powerful. We note
here that they can be combined into one formula

dS =
dU + P dV

T
.

Simple consequences of these formula are, of course (thinking of S as a
function of U and V ),

∂S

∂U
=

1

T
;

∂S

∂V
=

P

V
.

The stroke of genius by Boltzmann was to explain S in microscopic terms,
taking it as a primitive variable and then using the above relations to define
temperature and pressure.

Here is how entropy is explained by Boltzmann, via an elementary prob-
abilistic argument. Let us imagine that our ideal gas is composed of
N molecules and that each of these can occupy finitely many “states”
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1, 2, . . . , k with energy levels u1, u2, . . . , uk. Let us be a bit more pre-
cise. The set of all possible configurations – or states – of our gas is
Ω = {1, 2, . . . , k}N . Given ω = (ω1, ω2, . . . , ωk) ∈ Ω, let

ni = ni(ω) = #{ j : ωj = i } for i = 1, 2, . . . , k .

Then N = n1 + n2 + · · ·+ nk and the total (internal) energy of the gas in
the state ω is

U = n1u1 + n2u2 + · · ·+ nkuk .

Now we suppose that the (indistinguishable) molecules in the gas have
each an individual probability pi of being in the state i. Here pi ≥ 0 and
of course

∑
pi = 1. This induces a probability distribution P (ω) – the

product distribution – in Ω. If a configuration ω ∈ Ω is selected at random
according to such distribution, the expected number of molecules occupying
the state i is therefore Npi.

Definition 4. An equilibrium state for the gas is a state ω ∈ Ω for which
ni = Npi, for all i = 1, 2, . . . , k.

We are now ready for Boltzmann’s definition of entropy.

Definition 5. The entropy of the gas (relative to a given probability dis-
tribution of energy states) is given by S = kB log (# equilibrium states),
where kB > 0 is a universal constant.

The constant kB is called Boltzmann’s constant (more usually denoted
simply by the letter k). That there should be such a constant in the for-
mula defining entropy is unavoidable. The second law of thermodynamics
dictates that S is not a pure number, but has physical dimensions (it is
given in, say, Joules per Kelvin).

It is easy to estimate S for our ideal gas with the help of Stirling’s formula

n! '
√
2π nn+

1
2 e−n ,

which we write in logarithmic form as

log (n!) '
(
n+

1

2

)
log n− n+ c , (3)

where c = 1
2 log (2π). The number of equilibrium states is N !/(N1! · · ·Nk!),

where Ni = Npi for each i (of course Ni is not necessarily an integer, but
that will not affect our estimate). Thus, applying (3) several times, we get

S = kB log

(
N !

N1!N2! · · ·Nk!

)

'
(
N +

1

2

)
logN −N + c−

k∑

i=1

[(
Ni +

1

2

)
logNi −Ni + c

]
,
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and after after a few simple computations we deduce that

S ' −kBN
k∑

i=1

pi log pi . (4)

This is an approximate formula, but it is meant to became an exact formula
in the limit as N → ∞. Regarding a system with a very large number as
infinite corresponds to what physicists call taking the thermodynamic limit .
The expression in (4) can be recast in terms of the probability distribution
{P (ω) : ω ∈ Ω} over the product space Ω. Since we have

P (ω) =
N !

N1!N2! · · ·Nk!
pn1
1 p

n2
2 · · · p

nk

k ,

it follows from (4) and some straightforward computations that the right-
hand side of (4) is

S = −kB
∑

ω∈Ω

P (ω) log P (ω) . (5)

This we now take as the definition of entropy of such a probability distri-
bution.

The first basic foundational principle of statistical mechanics laid down
by Boltzmann and Gibbs states that, when the total energy U of the gas
is fixed, nature chooses the probabilities pi in such a way as to maximize
entropy. What is this special distribution? Mathematically, the problem is
to maximize

S = −kBN
k∑

i=1

pi log pi .

subject to the constraints
∑
pi = 1 and

∑
piui = U/N . This is a simple

problem with Lagrange multipliers whose solution is

pi =
e−βui

∑k
j=1 e

−βuj
; i = 1, 2, . . . , k ,

where β is the unique root of the equation

k∑

j=1

uje
−βuj =

U

N

k∑

j=1

e−βuj .

The probability distribution obtained in this fashion is called a Gibbs dis-
tribution. The denominator appearing in these expressions, namely Zβ =∑k

j=1 e
−βuj , is called the partition function of the gas.

Another very important notion in thermodynamics is that of free energy .
It is defined as F = U − TS, and physically it is the energy in the gas
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that is available for work. If we write it infinitesimally, we have dF =
dU − TdS−SdT , and if we combine this relation with the first and second
laws, we see that

dF = −P dV − S dT .

This tells us in particular that

P = −∂F
∂V

. (6)

This can be taken as the statistical mechanical definition of pressure, as
long as we manage to write the free energy in purely microscopic terms.
And this we can certainly do for our ideal gas. The second foundational
principle of Boltzmann and Gibbs tells us that in a isothermal process (i.e.,
at fixed temperature), nature chooses the probabilities so as to minimize
the free energy . Using this, one arrives after a similar computation as before
to the same Gibbs distribution probabilities, this time with β = 1/kBT ,
and one sees also that

F = −N
β

logZβ . (7)

3. Ergodic ideas: entropy, pressure and Gibbs states

Given the above motivation from statistical mechanics, the concepts from
ergodic theory and topological dynamics to be introduced below will, we
hope, seem more natural.

3.1. Entropy in dynamics. The concept of entropy was introduced in
ergodic theory by Kolmogorov and Sinai in 1959. Their definition was
undoubtedly inspired not only by the Boltzmann-Gibbs entropy, especially
in the form (5), but also by Shannon’s notion of information entropy , or
uncertainty . See [16] for a good account.

Let (X,B) be a measurable space, let µ be a (probability) measure on
X, and let T : X → X be a measure-preserving transformation (meaning
T−1B ∈ B for all B ∈ B). We define the entropy of T with respect to µ
as follows. First we associate to each partition A = {A1, A2, . . . , Am} of X
into measurable sets Aj ∈ B (pairwise disjoint modulo null-sets) its own
entropy, namely the number

h(A , µ) = −
∑

A∈A

µ(A) log µ(A) .

Note the similarity with (5). This is always a non-negative number (we
assume that 0 · log 0 = 0, encouraged by the continuity of x 7→ x log x).
Next, given two partitions A and B of X, we define their join as the
partition A ∨ B = {A ∩ B : A ∈ A and B ∈ B}. This can of course
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be extended to the join of any number of partitions. In particular, given
a partition A , we define for each n ≥ 0 the partition An = A ∨ T−1A ∨
· · · ∨ T−n+1A , where T−jA = {T−j(A) : A ∈ A } (which is obviously a
partition of X for each j). It is easy to see that h(An, µ) is a sub-additive
sequence, i.e.

h(Am+n, µ) ≤ h(Am, µ) + h(An, µ) .

(this follows at once from the fact that h(T−jAn, µ) = h(An, µ) for all
j, n ≥ 0, for T is measure-preserving). Then a well-known lemma implies
that the following limit exists:

hµ(T,A ) = lim
n→∞

1

n
h(An, µ) .

Finally, we let

hµ(T ) = sup
A

hµ(T,A ) ,

and call it the entropy of T with respect to µ. This is an invariant under
measurable conjugacies. It is also an additive invariant under composition,
so that hµ(T

n) = nhµ(T ). The entropy invariant is very useful in telling
ergodic systems apart (it turns out to be even a complete invariant for
Bernoulli shifts).

When X is a compact metric space and T is continuous, and we let µ run
through the set M(X,T ) of T -invariant Borel probability measures on X,
we get the following remarkable fact, known as the variational principle,
relating the topological entropy of T (see [27]) with the measure-theoretic
entropies just defined:

htop(T ) = sup
µ∈M(X,T )

hµ(T ) (8)

As it turns out, for (irreducible, aperiodic) subshifts of finite type, the
topological entropy htop(T ) is always strictly positive. It is in fact equal
to log λ, where λ is the largest eigenvalue of the shift’s transition matrix
(again, see [27]).

3.2. Topological pressure. Let us move to a concept that properly speak-
ing belongs not to ergodic theory, but to topological dynamics. Just as with
measure-theoretic entropy, the concept of topological pressure was inspired
by statistical mechanics, this time on the expression of pressure as a certain
derivative of the free energy, see (6)and (7). Rather than giving the most
general definition, we introduce the concept of topological pressure in the
specific context of repellers. For a more general treatment, see [27] or [18].
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Let ϕ : Jf → R be a continuous function, and let B = Ji0i1···in ∈ An be
a cylinder of Jf . We write

ϕB = sup
x∈B

ϕ(x) .

Let us also consider the Birkhoff sums of ϕ, namely

Snϕ =

n−1∑

j=0

ϕ ◦ f j .

Each of these sums is, on its own right, a continuous function on the limit
set Jf .

Theorem 3. For every continuous function ϕ : Jf → R, the limit

P (ϕ) = lim
n→∞

1

n
log



∑

B∈An

e(Snϕ)B


 (9)

exists.

Proof. Let (pn) be the sequence given by

pn =
∑

B∈An

e(Snϕ)B .

We claim that (pn) is sub-multiplicative, in the sense that pm+n ≤ pm · pn
for all m,n ≥ 0. To see why, note that for all x ∈ Jf we have

Sm+nϕ(x) = Smϕ(x) + Snϕ(f
m(x)) . (10)

Given any cylinder B ∈ Am+n, we know that there exist cylinders B′ ∈ Am

and B′′ ∈ An such that B = B′ ∩ f−m(B′′). Taking the supremum in (10)
over all x ∈ B, we get

(Sm+nϕ)B ≤ (Smϕ)B′ + (Snϕ)B′′ .

Therefore we have

pm+m =
∑

B∈Am+n

e(Sm+nϕ)B

≤
∑

B′∈Am

∑

B′′∈An

e(Smϕ)B′+(Snϕ)B′′

=


 ∑

B′∈Am

e(Smϕ)B′




 ∑

B′′∈An

e(Snϕ)B′′


 = pm · pn .
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This proves our claim. Hence (log pn) is a sub-additive sequence. The
theorem follows, then, from a well-known lemma concerning sub-additive
sequences. �

The limit (9) whose existence has been established by this theorem is
called the topological pressure of ϕ. When ϕ = 0, such limit agrees in fact
with the topological entropy of f |Jf , see [27].

The topological pressure satisfies a variational principle that is a gener-
alization of (8). Indeed, one can prove (see [27]) that

P (ϕ) = sup
µ∈M(X,T )

{hµ(T ) +
∫

X
ϕdµ} .

In particular, P (0) = htop(T ) ≥ 0.

3.3. Equilibrium states. Another notion from ergodic theory that will
be needed below is that of a Gibbs or equilibrium measure. This concept
once again has its origins in statistical mechanics, see §2. Its use in dynam-
ical systems was pioneered by Sinai, Bowen and Ruelle (see [28] for more
details). Again, we restrict our discussion to the specific context at hand.
Let us consider a (continuous) function ϕ : Jf → R.

Definition 6. An equilibrium (or Gibbs) measure for ϕ is a Borel measure
µ supported on Jf for which there exist constants K ≥ 1 and C > 0 such
that, for all cylinders B ∈ An and all x ∈ B we have

1

K
≤ µ(B)

eSnϕ(x)+Cn
≤ K . (11)

Note that there exists at most one value of C for which (11) holds. The
existence and uniqueness of an equilibrium measure for a given ϕ are not
always guaranteed. A sufficient condition is to require that ϕ be Hölder
continuous. Let us define the n-th variation of ϕ to be

Varn(ϕ) = max{|ϕ(x) − ϕ(y)| : x, y ∈ B, B ∈ An} .
We say that ϕ is Hölder continuous if the n-th variation of ϕ decreases
exponentially with n, i.e. if there exist constants c > 0 and 0 < α < 1 such
that Varn(ϕ) ≤ cαn for all n. See the next section for more.

3.4. The Ruelle operator. We work in the context of subshifts of finite
type, but the discussion to follow is considerably more general. See for
instance [27]. In particular, everything we say here could be written directly
for our Cantor repeller (f, Jf ).

Let X ⊆ {1, 2, . . . ,m}N be such a subshift, and let T : X → X be the
shift map. We can assume that X is endowed with a metric that attributes
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diameter 2−n for each n-cylinder in An. Suppose we are given a continuous
function ϕ : X → R. For each n ≥ 1, let

Varn(ϕ) = sup
A∈An

sup
x,y∈A

|ϕ(x) − ϕ(y)| ,

where, as before, An is the set of all n-cylinders of X. We write

‖ϕ‖BV = ‖ϕ‖+
∞∑

n=1

Varn(ϕ) .

Here and throughout, ‖ · ‖ denotes the sup norm of C(X). When ‖ϕ‖BV <
∞ we say that ϕ has bounded variation. The space of all such ϕ’s having
bounded variation is a Banach space denoted BV (X), with norm given
by the above expression. Note that if ϕ ∈ BV (X) then ϕ is necessarily
continuous: in fact, ϕ ∈ C(X) if and only if Varn(ϕ) → 0 as n →∞. The
inclusion BV (X) ↪→ C(X) is a linear contraction.

Given ϕ ∈ BV (X), we define a linear operator Lϕ : C(X)→ C(X) by

Lϕf(x) =
∑

y∈T−1(x)

eϕ(y)f(y) . (12)

Since the shift map T is at most m-to-one on X, the sum in the right-hand
side of (12) is finite and therefore the operator Lϕ is well-defined. It is
called the Ruelle operator , or transfer operator , associated with ϕ.

Here is a simple remark concerning the Ruelle operator which explains
its connection with topological pressure. Note that if we take f ∈ C(X)
and compute its n-th iterated image under Lϕ, we get

L
n
ϕ f(x) =

∑

y∈T−n(x)

eSnϕ(y)f(y) ,

where as before Snϕ = ϕ+ϕ ◦ T + · · ·+ ϕ ◦ T n−1 is the n-th Birkhoff sum
of ϕ. Hence, if f 6= 0, we have

∥∥∥∥
L n
ϕ f

‖f‖

∥∥∥∥
1/n

≤



∑

A∈An

e(Snϕ)A




1/n

−→ eP (ϕ) (13)

as n → ∞. It follows at once from (13) that the spectral radius of Lϕ is

≤ eP (ϕ). This much is apparent, but the following more subtle result yields
much more information about the spectrum of the Ruelle operator.

Theorem 4 (Ruelle-Perron-Frobenius). For each ϕ ∈ BV (X), the Ruelle
operator Lϕ has the following properties.

(a) It has a simple eigenvalue β > 0 with associated eigenfunction
fβ > 0;
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(b) We have P (ϕ) = β;
(c) There exists a unique Borel probability measure µ on X such that

L ∗
ϕ (µ) = βµ, and β−nL n

ϕ (f) converges in C(X) to the function

∫
X f dµ∫
X fβ dµ

fβ ,

for all f ∈ C(X).

For the (non-trivial) proof, which involves the use of Schauder’s fixed-
point theorem several times, we refer the reader to [28, ch. 4].

How does the topological pressure P (ϕ) vary as a function of ϕ? Given
that P (ϕ) is detected from the spectral radius of Lϕ, the answer lies in the
following theorem from functional analysis. See [20, p. 166] for a proof.

Theorem 5 (Kato-Rellich). Let E be a complex Banach space, and let
L(E) be the space of bounded linear operators E → E with the operator
norm topology. If T0 ∈ L(E) has a simple eigenvalue λ0 which is isolated
in the spectrum of T0, then for each ε > 0 there exists δ > 0 with the
following property. If T ∈ L(E) is such that ‖T − T0‖ < δ, then T has an
isolated eigenvalue λ(T ) in its spectrum, and this eigenvalue is close to λ0 in
the sense that |λ(T )− λ0| < ε; in other words, sp(T ) ∩D(λ0, ε) = {λ(T )}.
Moreover, the function T → λ(T ) is holomorphic, and for each T there
is an eigenvector vT ∈ E with eigenvalue λT such that T → vT is also
holomorphic.

Note however that theorem 4 in the form given does not guarantee that
β is an isolated eigenvalue. This will be true if we impose the additional
condition that the function ϕ be Hölder continuous, in the sense that
Varn ≤ C2−αn for some C > 0 and α > 0. In this case, we can consider
V ⊂ C(X) consisting of all those functions f such that

‖f‖V = ‖f‖+ sup {2nαVarn(f) : n ≥ 1} < ∞ .

Then V is a Banach space under this norm, and one verifies easily that
Lϕ(V ) ⊂ V , and also that the eigenfunction fβ ∈ V . Hence we can consider
the Ruelle operator acting only on V . To be able to apply the Kato-Rellich
theorem to this situation, one simply considers the complex Banach space
of functions of the form f + ig with f, g ∈ V . After some work, one arrives
at the following result.

Corollary 1. If ϕ is Hölder continuous, there exists a unique T -invariant
probability measure µ such that L ∗

ϕ (µ) = µ, and this measure is an equilib-
rium measure. Moreover, the function t 7→ P (tϕ) is real-analytic.
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See the excellent survey [28] for a proof. Given the identification of our
repeller (f, Jf ) with a subshift as considered here, the above corollary could
also be stated as follows.

Corollary 2. Let ϕ : Jf → R be Hölder continuous. The there exists a
unique probability equilibrium measure for (f, Jf , ϕ). Moreover, the pres-
sure of tϕ varies real-analytically with t.

4. Hausdorff dimension

We digress a bit to introduce the notion of Hausdorff dimension. For
more details and complete proofs of the assertions made here, see the stan-
dard reference [14]. The exposition here is taken from [7].

First we define the so-called Hausdorff outer measures on R
n. Given real

numbers s > 0 and ε > 0 and any (Borel) set E ⊆ R
n, let

µεs(E) = inf
B

∑

B∈B

|B|s ,

the infimum being taken over all coverings B of the set E by balls B ∈ B

with diameter |B| ≤ ε. Note that µεs(E) is, for fixed s and E, a non-
increasing function of ε. Hence we can define µs(E) = limε→0 µ

ε
s(E). It is

straightforward to prove that µs is an outer measure, for all s > 0. It is
also an easy exercise to check that µs(E) = 0 for all E ⊆ R

n when s > n.

Definition 7. The Hausdorff dimension of a (Borel) set E ⊆ R
n is

dimH(E) = inf {s > 0 : µs(E) = 0} .

In particular, the Hausdorff dimension of any E ⊆ R
n is always ≤ n. One

can show that, if d = dimH(E), then µs(E) = ∞ if s < d and µs(E) = 0
if s > d. Hausdorff dimension is a diffeomorphism invariant : if E ⊆ R

n

is a Borel set and g : Rn → R
n is a diffeomorphism, then dimH(g(E)) =

dimH(E).

Calculating the exact value of the Hausdorff dimension of a set can be
rather tricky. As a rule, good upper bounds are usually easier to get than
good lower bounds. An extremely useful tool for good lower bounds is the
following result.

Lemma 1. Let E ⊆ R
n be a Borel set, and let µ be a (Borel) measure

with support in E. Suppose there exist s > 0, ε > 0 and C > 0 such
that µ(A) ≤ C|A|s for all measurable sets A ⊆ E with |A| ≤ ε. Then
dimH(E) ≥ s.
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Proof. Let B be any (countable) covering of E by balls of diameter ≤ δ < ε.
Then for all B ∈ B we have

µ(B) = µ(B ∩ E) ≤ C|B ∩ E|s ≤ C|B|s .
Therefore

∑

B∈B

|B|s ≥ 1

C

∑

B∈B

µ(B) ≥ 1

C
µ

(
⋃

B∈B

B

)

=
1

C
µ(E) > 0

Taking the infimum over all such coverings, we get µδs(E) ≥ C−1µ(E) > 0.
Letting δ → 0, we deduce that µs(E) > 0, and this means of course that
dimH(E) ≥ s. �

The above lemma is known in the literature asmass distribution principle
(see for instance [14, p. 60]). In some places it is called Frostmann’s lemma,
but this last name should be reserved to the more difficult result proved by
Frostmann, namely the converse to the above lemma (which however will
not be needed here). The mass distribution principle is extremely useful.
As an exercise, the reader may use it to calculate the Hausdorff dimension
of the standard triadic Cantor set.

There are many other useful dimensions in dynamics. For their defini-
tions and properties, and to understand how they relate to each other in
the context of conformal dynamics, we recommend [26].

5. Bowen’s theorem and beyond

Let us now return to the problem of computing the Hausdorff dimension
of our Cantor repeller Jf . Let us consider the function ψ = − log |f ′|
restricted to Jf . Note that the expansion property (a) defining a conformal
repeller implies that, for all sufficiently large n, the Birkhoff sums Snψ are
negative everywhere in Jf . This fact will be used below. But first we need
the following lemma, which estimates the sizes of cylinders of Jf in terms
of the values of these Birkhoff sums on points of the cylinders.

Lemma 2. There exists a constant C > 0 such that, for all cylinders
B ∈ An and all points x ∈ B, we have

C−1eSnψ(x) ≤ |B| ≤ C eSnψ(x) .

The proof uses some Koebe conformal distortion estimates combined
with the contraction of hyperbolic metrics given by Schwarz’s lemma. See
[7] for details.
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This lemma tells us in particular that the sizes of cylinders in An decrease
at an exponential rate as n → ∞. In particular, ϕ = − log |f ′| is Hölder
continuous in Jf . Hence by corollary 2, there exists an equilibrium measure
for ϕ. This fact will be used in the following theorem due to Bowen, the
culmination of our efforts in this section.

Theorem 6 (Bowen). Let (f, Jf ) be a Cantor repeller. Then the Haus-
dorff dimension of its limit set Jf is the unique real number t such that
P (−t log |f ′|) = 0.

Proof. Let us first prove that a value of t with the stated property exists.
We will write ϕ = − log |f ′| as before. Recall that

P (tϕ) = lim
n→∞

1

n
log pn(t) ,

where
pn(t) =

∑

B∈An

et(Snϕ)B . (14)

As observed before, P (0) is equal to the topological entropy of (f, Jf ), and
this turns out to be a positive number, so P (0) > 0. On the other hand,
because f is expanding in Jf , say |f ′| ≥ λ > 1 there, we have

ϕ = − log |f ′| ≤ − log λ < 0 .

Since An contains at most Nn+1 cylinders (where N is the number of com-
ponents Ui in the domain of f), we see from (14) that pn(t) ≤ Nn+1e−λtn.
Hence

1

n
log pn(t) ≤

(
1 +

1

n

)
logN − λt ,

and this tells us that
P (tϕ) ≤ logN − λt .

This shows that P (tϕ) → −∞ as t → ∞. A similar sort of argument also
shows that P is a decreasing function of t. Therefore there exists a unique
value of t for which P (tϕ) = 0. Let us denote this special value of t by δ.
Note that δ > 0.

Now we need to show that δ is the Hausdorff dimension of Jf . First
we claim that dimH(Jf ) ≤ δ. Let us use the coverings of Jf given by the
An’s themselves. Given any t > δ and ε > 0, choose n so large that every
B ∈ An has diameter less than ε. Applying lemma 2, we get

µεt(Jf ) ≤
∑

B∈An

|B|t

≤ Ct
∑

B∈An

et(Snϕ)B = Ctpn(t) ,
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where C is the constant in that lemma. From this, it follows that

µεt (Jf ) ≤ Cten[P (tϕ)−εn] , (15)

where εn = P (tϕ)−(log pn(t)/n) tends to zero as n→∞. Since P (tϕ) < 0,
the right-hand side of (15) also goes to zero as n→∞, and thus µεt (Jf ) =
0 for all ε > 0. Hence µt(Jf ) = 0, for all t > δ, and this shows that
dimH(Jf ) ≤ δ as claimed.

In order to reverse this inequality, we apply the mass distribution princi-
ple, using the equilibrium measure µ for the potential δϕ, whose existence is
guaranteed by corollary 2. We need to check that µ satisfies the hypothesis
of that principle with s = δ. In other words, we need to show that

µ(D(x, r)) ≤ Crδ (16)

for every disk of sufficiently small radius r centered at an arbitrary point
x ∈ Jf . Given such a disk, let n = n(r, x) be chosen so that

|(fn−1)′(x)| < r−1 ≤ |(fn)′(x)| .

Let B ⊆ An be the set of all cylinders B in An such that B ∩D(x, r) 6= Ø.
Then

µ(D(x, r)) ≤
∑

B∈B

µ(B) . (17)

It is not difficult to see (exercise) that the number of elements of B is
bounded by a constant independent of n. Moreover, since µ is an equilib-
rium measure for δϕ and P (δϕ) = 0, we see from (11) that

µ(B) ≤ C1e
δSnϕ(y) , (18)

for every cylinder B ∈ An, where y ∈ B is arbitrary. For cylinders in B,
we can in fact take y ∈ B∩D(x, r). Some standard estimates on conformal
distortion (see [7, ch. 3]) applied to a suitable inverse branch of fn yield

eSnϕ(y) = |(fn)′(y)|−1 ≤ C2|(fn)′(x)|−1 .

Taking this information back to (18) yields

µ(B) ≤ C3|(fn)′(x)|−δ ≤ C3r
δ ,

by our choice of n. Using this last inequality in (17) we get (16). This
shows that µ indeed satisfies the hypothesis of lemma 1, and therefore
dimH(Jf ) ≥ δ. This completes the proof of Bowen’s theorem. �
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5.1. Further developments. As we mentioned earlier, Bowen’s theorem
is only the beginning of a fascinating subject. Bowen’s formula is still
valid for other conformal repellers, such as Julia sets of expanding rational
maps. In particular, it holds true in the case of a quadratic polynomial
fc(z) = z2 + c with |c| small. In this case, the limit set – that is, the
Julia set J(fc) – is a quasi-circle, i.e. the image of a round circle under a
quasi-conformal map. For a proof of Bowen’s formula covering such cases,
see [28]. In [22], D. Ruelle proved an asymptotic formula for the Hausdorff
dimension of J(fc) for |c| near zero, namely

dimH(J(fc)) = 1 +
|c|2

4 log 2
+ o(|c|2) .

The proof involves the study of the first two derivatives of the pressure
function. The Hausdorff dimension of J(fc) for c in the main cardioid
of the Mandelbrot set is a real-analytic function of c, and it attains its
minimum value 1 at c = 0. Once again, see [28, ch. 6].

In recent years, a great deal of work has been done in attempting to
generalize both Bowen and Ruelle’s formulas to situations where expansion
fails, as in the case of parabolic rational maps. An excellent survey of this
area is [26].

6. Asymptotically conformal repellers

The above result by Bowen would remain valid if we considered uniformly
asymptotically conformal (u.a.c.) Cantor repellers, instead of conformal
ones (see [10] for more on u.a.c. Cantor repellers). We assume that the
reader is familiar with the basic facts about quasiconformal maps (see for
instance [1]).

Let U be an open set, and let Λ ⊂ U be a compact set. We say that a
quasiconformal map f : U → C is asymptotically conformal at Λ if for each
ε > 0 there exists a neighborhood Uε of Λ in U such that the qc-dilatation
of f satisfies Kf (z) ≤ 1 + ε for all z ∈ Uε.

Now, a pseudo semigroup G of quasiconformal maps is said to be a uni-
formly asymptotically conformal near its non-wandering set Λ if for every
ε > 0 there exists a neighborhood Uε of Λ such for every word w in elements
of G and every z ∈ Uε such that w(z) ∈ Uε, we have Kw(z) ≤ 1 + ε. Using
this notion, we can formulate the notion of a uniformly asymptotically con-
formal Cantor repeller, imitating definition 2. As we remarked, Bowen’s
theory can be completely adapted to this situation. In particular, one has
a theory of Gibbs states for u.a.c. Cantor repellers.

In [10], we defined an appropriate notion of Teichmüller space for such
u.a.c. dynamical systems. An interesting problem is to understand the
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relationship between such Teichmüller space and the space of Gibbs states
on the u.a.c. system. For example, in the case when the repeller is topo-
logically the full one-sided shift on two symbols, we showed in [10] that the
Teichmüller space is acted upon discretely by a group called Thompson’s
group, a very interesting algebraic object. For the relevant definitions and
properties of this object, see [10] and [5]. So we can end this section with
a problem.

Problem 1. Describe the action of Thompson’s group on the Gibbs states
of a uniformly asymptotically conformal Cantor repeller.

The dynamical action of Thompson’s group constructed in [10] involves
the notion of dual of a Cantor repeller. For a binary Cantor set such as
the one referred to above, this dual object is another Cantor repeller of the
same type. For other more general subshifts of finite type, the construction
is more involved, and depends on the theory of branched Riemann surfaces,
as will be shown in the forthcoming article [9].

7. Riemann surface laminations

In this final section, we merely sketch possible connections with Sullivan’s
dynamical theory of Riemann surface laminations.

These objects are generalizations of foliations of a space whose leaves
are Riemann surfaces. Let X be a (Hausdorff, second countable) topolog-
ical space. A Riemann surface lamination structure (or RSL-structure for
short) on X consists of an atlas whose charts (Ui, ϕi) are such that

(i) Each Ui ⊂ X is open, and the union of all such open sets is a
covering of X;

(ii) Each ϕ : Ui → Di × Ti is a homeomorphism, where Di ⊂ C is an
open disk and Ti is some (Hausdorff) topological space;

(iii) The chart transitions

ϕij = ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

have the special form ϕij(z, t) = (hij(z, t), σij(t)), where hij is con-
tinuous on both variables and holomorphic in z, and σij is contin-
uous.

Endowed with such structure, X is what we call a Riemann surface lam-
ination. Just as in the case of foliations, one can define the leaves of a
lamination: these turn out to be Riemann surfaces in a natural way. A
Riemann surface lamination is said to be hyperbolic if all its leaves are
hyperbolic Riemann surfaces.

Riemann surface laminations have been used by Sullivan in [25] to es-
tablish the contraction (without a rate) of the renormalization operator
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for quadratic-like maps. Sullivan’s theory was adapted to the context of
critical circle maps by the author in [6].

A special case of the following theorem was proved in [6]. The proof
given there applies, mutatis mutandis, to the present more general setting.

Theorem 7. To each uniformly asymptotically conformal Cantor repeller
(U, f, V ) one can associate a compact, hyperbolic Riemann surface lamina-
tion L (U, f, V ) in such a way that

(a) If (U, f, V ) and (Ũ , f̃ , Ṽ ) represent the same germ, then the corre-

sponding Rimann surface laminations L (U, f, V ) and L (Ũ , f̃ , Ṽ )
are isomorphic.

(b) Every qc-conjugacy (U1, f1, V1) ∼ (U2, f2, V2) between two Cantor
repellers induces a qc RSL-isomorphism

L (U1, f1, V1) ∼ L (U2, f2, V2)

between the corresponding laminations.

One can proceed in analogy with the case of Riemann surfaces and de-
fine the Teichmüller space of a Riemann surface lamination. See [6] for the
definition. By the above theorem, the dynamics of the germ of a Cantor
repeller up to conformal conjugacy is faithfully represented by the corre-
sponding lamination up to suitable RSL-isomorphism, i.e., by an element
of such Teichmüller space. Hence we can formulate the following problem.

Problem 2. Give a detailed description of the Gibbs states of an asymp-
totically conformal Cantor repeller in terms of the Teichmüller space of the
associated Riemann surface lamination.

Many other qustions can be asked. For example, in the case of the binary
Cantor sets discussed in the previous section, an interesting problem is to
study the action of Thompson’s F group on the Teichmüller space of the
corresponding lamination.

For an extremely elegant exposition of the general theory of Riemann
surface laminations, the reader should consult [15].
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