A Class of Topological Foliations on S^2
That Are Topologically Equivalent to Polynomial Vector fields

Carlos Gutierrez

Abstract. Let \mathcal{F} be an oriented topological foliation on $S^2 = \{(x, y, z) \in \mathbb{R}^3; x^2 + y^2 + z^2 = 1\}$ having only a finite number of singularities. If \mathcal{F} has only a finite number of closed orbits and satisfies one additional condition, then it is shown that \mathcal{F} is topologically equivalent to (the foliation induced by) a polynomial vector field.

1. Introduction

In this note we extend the main result of Schecter-Singer [4] from the C^1-class to the C^0-class. While the statement of our result is a little more general than that of [4], when we restrict to the C^1-class, the proofs given in [4] apply to the situation stated here (see Remark 2.1 below). Besides extending to the C^0-topology, we wanted to present, in a concise way, this very nice result of Schecter-Singer whose complete statement takes the first 16 pages of the referred article. We must say that this work depends on the results and arguments given in [4].

Two (one-dimensional) oriented topological foliations \mathcal{F}_1 and \mathcal{F}_2, with or without singularities, defined on 2-manifolds M_1 and M_2, respectively, with corresponding set of singularities $S_1 \subset M_1$ and $S_2 \subset M_2$ are called topologically equivalent if there is a homeomorphism $h : M_1 \rightarrow M_2$ that takes S_1 onto S_2 and sends orbits (i.e. leaves) of \mathcal{F}_1 onto orbits of \mathcal{F}_2, preserving the direction of the orbits.

1Partially supported by FAPESP Grant 03/03107-9 and by CNPq Grants #470957/2006-9 and #306328/2006-2, Brazil.
In this paper, we consider a class of oriented topological foliation, with singularities, on S^2 that are topologically equivalent to (the foliations induced by) polynomial vector fields. Here $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$. “Vector field on S^2” always means a tangent vector field to S^2; a polynomial vector field on S^2 is, in addition, one each of whose coordinates is a polynomial in x, y, z.

Isolated singularities p and q of oriented topological foliations \mathcal{F}_1 and \mathcal{F}_2 on 2–manifolds M and N are called topologically equivalent if there are neighborhoods U and V of p and q such that $\mathcal{F}_1|_U$ is topologically equivalent to $\mathcal{F}_2|_V$ via a homeomorphism that takes p to q.

Orient S^2 by its unit outer normal vector field. In this paper, an isolated singularity p of an oriented topological foliation \mathcal{F} on S^2 is said to be of finite type if (i) it is not topologically equivalent to a node; (ii) the local phase portrait of p is the union of finitely many hyperbolic, elliptic and parabolic sectors in the sense of [1, page 315]; in particular the elliptic sectors have no hyperbolic parts and the hyperbolic sectors have no elliptic parts ([3, Chapter VII – page 161]).

2. Singularities of finite type

Let p be an isolated singularity of an oriented topological foliation of finite type \mathcal{F} on S^2. Then p has arbitrarily small canonical neighborhoods homeomorphic to compact discs whose boundaries are circles having the least possible number of tangencies with the foliation \mathcal{F}. In all figures, C will denote one of these circles [1, pp. 313-314], [3, Chapter VII – page 161]; see Fig. 1.

The restrictions of \mathcal{F} to any two canonical neighborhoods of p are topologically equivalent. There is a familiar division of any canonical neighborhood of p into a finite number of elliptic, hyperbolic, and parabolic sectors [1, Chap. 8]; see Fig. 1. If γ is an orbit of \mathcal{F}, we shall denote by $\gamma(t)$ an arbitrary parametrization of γ, with t varying in \mathbb{R} and such that, for increasing t, $\gamma(t)$ moves in conformity with the orientation of \mathcal{F}. The definitions below do no depend on the particular parametrization $\gamma(t)$ of γ. An α-(resp. ω-)separatrix at p is a semiorbit $\gamma(t)$ of \mathcal{F} that approaches p as $t \to -\infty$ (resp. as $t \to \infty$) and that bounds a hyperbolic sector at p. We shall use the shorter expression separatrix to refer to an orbit of \mathcal{F} that includes an α- or ω- separatrix at any singularity. If $\gamma = \gamma(t)$ is the orbit of \mathcal{F} that passes through p at $t = 0$, then q belongs to the α-limit set (resp. ω-limit set) of p if and only if there is a sequence $t_n \to -\infty$ (resp. $t_n \to \infty$) such that $||\gamma(t_n) - q|| \to 0$. A limit set K is the α- or ω-limit set of some
point; a limit set is always a compact connected union of orbits. Moreover, if \(\mathcal{F} \) has only a finite number of singularities and closed orbits, then by the Poincaré Bendixson Theorem, each limit set of \(\mathcal{F} \) is either a singularity or a single closed orbit or else a compact connected union of singularities and orbits that are \(\alpha \)-separatrices at one end and \(\omega \)-separatrices at the other. A limit set of the latter type is called a separatrix cycle. If \(\Gamma \) is an attracting separatrix cycle (resp. a repelling separatrix cycle), there exists an open cylinder \(A \) such that \(A \cap \Gamma = \emptyset, \Gamma \subset \overline{A} \), and for all \(p \in A \), the \(\omega \)-limit set of \(p \) is \(\Gamma \) (resp. the \(\alpha \)-limit set of \(p \) is \(\Gamma \)).

Let \(S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \). Given an subinterval \(I \) of \([0,\infty)\) we shall denote by

\[I \cdot S^1 = \{(ax,ay) : a \in I, (x,y) \in S^1\} \]

The set \(I \cdot S^1 \) will be simply denoted by \(S^1 \). An oriented topological foliation \(\mathcal{F} \) over \((0,2) \cdot S^1 \) is said to be of type 1 (and degree \(s \in \mathbb{N} \setminus \{0\} \)) if (i) the terms of the sequence \(\{p_k = (\cos(2\pi(k-1)/s), \sin(2\pi(k-1)/s)) : k = 1,2,\ldots,s\} \) of \(S^1 \) make up the set \(S \) of singularities of \(\mathcal{F} \); (ii) every such singularity \(p_k \) is topologically equivalent to either a hyperbolic saddle or to a node, and (iii) \(S^1 \setminus S \) is made up of (full) orbits of \(\mathcal{F} \). We shall say that \((p_1,p_2,\ldots,p_s)\) is the sequence of singularities of \(\mathcal{F} \).

Let \(\mathcal{F} \) be an oriented topological foliation on \(S^2 \). If \(p \) is an isolated singularity of finite type, there exists an open neighborhood \(V \) of \(p \) and a type one foliation \(\mathcal{F}_1 \) on \((0,2) \cdot S^1 \) such that, for some \(\varepsilon > 0 \), \(\mathcal{F}_1|_{(1,1+\varepsilon)\cdot S^1} \) is

topologically equivalent to $\mathcal{F}|_{V\setminus\{p\}}$. Since $\mathcal{F}_1|_{S^1}$ is a one–dimensional oriented foliation having only attracting and repelling singularities, it (and so \mathcal{F}_1) has an even number s of singularities. The foliation \mathcal{F}_1 will be said to be a topological blown up of p. Let (p_1, p_2, \ldots, p_s) be the sequence of singularities of \mathcal{F}_1. The saddle-node sequence of $(\mathcal{F}_1, (p_1, p_2, \ldots, p_s))$, is the sequence of s symbols from the set $\{S_\alpha, S_\omega, N_\alpha, N_\omega\}$. The jth symbol is determined by the behavior of \mathcal{F}_1 in $[1, 2) \cdot S^1$ near p_j. The jth symbol of the saddle-node sequence is

- S_α (resp. S_ω) if there are two hyperbolic sectors of \mathcal{F}_1 at p_j in $[1, 2) \cdot S^1$, bounded by S^1 and an α- (resp. ω-) separatix at p_j;
- N_α (resp. N_ω) if a neighborhood of p_j in $[1, 2) \cdot S^1$ is the union of negative (resp. positive) semi-orbits of \mathcal{F}_1 that converge to p_j.

The saddle-node sequence of $(\mathcal{F}_1, (p_1, p_2, \ldots, p_s))$, will be said to be a saddle-node sequence of p. The saddle-node cycle of a singularity is just the saddle-node sequence thought of as a cycle: the first term in the sequence follows the last. In the following lemma, which is immediate, if δ denotes α (resp. denotes ω), then δ^* will denote ω (resp. will denote α).

Lemma 2.1. Let \mathcal{F} be a topological foliation on S^2 having an isolated singularity p of finite type. Let \mathcal{F}_1 be a topological blown up of p and let (p_1, p_2, \ldots, p_s) be the sequence of singularities of \mathcal{F}_1. Let $\Sigma = (\sigma_1, \sigma_2, \ldots, \sigma_s)$, be the saddle-node sequence of $(\mathcal{F}_1, (p_1, p_2, \ldots, p_s))$. Then, the first symbol in a saddle-node cycle $\Sigma = (\sigma_1, \sigma_2, \ldots, \sigma_s)$, of a finite type singularity p, can be taken to be S_α or N_ω. Moreover, for $\delta \in \{\alpha, \omega\}$,

1. S_δ (resp. N_δ) is always followed by S_δ^* or N_δ^* (resp. by S_δ or N_δ^*).
2. Each pair of consecutive terms σ_i, σ_{i+1} of the form $S_\delta S_\delta^*$ corresponds to exactly one hyperbolic sector $\text{Sec}(\sigma_i, \sigma_{i+1})$ of p. See Fig. 2.
3. Each pair of consecutive terms σ_i, σ_{i+1} of the form $N_\delta N_\delta^*$ corresponds to exactly one elliptic sector $\text{Sec}(\sigma_i, \sigma_{i+1})$ of p;
4. Let $\sigma_i, \sigma_{i+1}, \ldots, \sigma_{i+k}$ be a subsequence of Σ such that (i) $\sigma_i, \sigma_{i+k} \in \{S_\delta, N_\delta\}$ and, (ii) every term $\sigma_i, \sigma_{i+2}, \ldots, \sigma_{i+k-1}$ belongs to $\{S_\delta, N_\delta\}$ (and so $S_\delta S_\delta^*$ and $N_\delta N_\delta^*$ alternate). Then

 - (4.1) if $k \geq 3$ is odd and $\text{Sec}(\sigma_i, \sigma_{i+1}), \text{Sec}(\sigma_{i+k-1}, \sigma_{i+k})$ are elliptic then $\sigma_i, \sigma_{i+1}, \ldots, \sigma_{i+k}$ corresponds to exactly one parabolic sector $\text{Sec}(\sigma_i, \sigma_{i+k})$ separating the referred two elliptic sectors. See Fig. 3.
 - (4.2) if $k \geq 4$ is even and one between $\text{Sec}(\sigma_i, \sigma_{i+2}), \text{Sec}(\sigma_{i+k-2}, \sigma_{i+k})$ is elliptic and the other hyperbolic, then $\sigma_i, \sigma_{i+1}, \ldots, \sigma_{i+k}$ corresponds to exactly one parabolic sector $\text{Sec}(\sigma_i, \sigma_{i+k})$ separating the referred two sectors. See Fig. 4.
A Class of Topological Foliations on S^2

(4.3) if $k \geq 5$ is odd and $\text{Sec}(\sigma_{i+1}, \sigma_{i+2})$, $\text{Sec}(\sigma_{i+k-1}, \sigma_{i+k})$ are hyperbolic then $\sigma_{i+1}, \ldots, \sigma_{i+k}$ corresponds to exactly one parabolic sector $\text{Sec}(\sigma_{i+1}, \ldots, \sigma_{i+k})$ separating the referred two hyperbolic sectors. See Fig. 5.

(5) The topological blown up \mathcal{F}_1 of p can be taken so that, for any parabolic sector P of p, and modulo the restrictions imposed by (4) above, we may select the length k of the subsequence $\sigma_{i+1}, \ldots, \sigma_{i+k}$ of Σ which satisfies $P = \text{Sec}(\sigma_{i+1}, \ldots, \sigma_{i+k})$.

![Figure 2](image1.png)

![Figure 3](image2.png)

![Figure 4](image3.png)

We shall say that the topological blown up \mathcal{F}_1 of the singularity p as above is *tight* if the subsequences of Σ associated to parabolic sectors have lengths 3, 4 and 5 according as they correspond to the situations considered in (4.1), (4.2) and (4.3), respectively.

Let \mathcal{F} be a oriented topological foliation on S^2 having finitely many singularities, each of which is either of finite type or topologically equivalent to a node. Let $\{p_1, p_2, \ldots, p_s\}$ be the singularities of \mathcal{F} of finite type. For each such singularity p_i, we consider a topological blown up \mathcal{F}_i of p_i and construct a corresponding saddle–node sequence $\Sigma_i = \sigma_{i1}\sigma_{i2}, \ldots, \sigma_{im_i}$ as above. Set $d_i = (m_i + 2)/2$. Each separatrix cycle K of \mathcal{F} corresponds to a cycle C_K of some of the σ_{ij}. Any σ_{ij} in such a cycle is an S_α or an S_ω.

Let \mathcal{L} denote the set of all σ_{ij} such that $\sigma_{ij} \in \{S_\alpha, S_\omega\}$ and $\sigma_{ij+d_i-1} \in \{S_\alpha, S_\omega\}$. Here the second subscript is mod m_i. We say \mathcal{F}, $(\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_s)$) satisfies the *separatrix cycle condition* provided there is a function $f(\sigma_{ij})$ from \mathcal{L} to the positive reals such that

(F1) $f(\sigma_{ij}) = f(\sigma_{ij+d_i-1})$ if $d_i - 1$ is even; $f(\sigma_{ij}) = [f(\sigma_{ij+d_i-1})]^{-1}$ if $d_i - 1$ is odd.

(F2) For every one-sided limit set K of \mathcal{F} that is a separatrix cycle, either

1. all σ_{ij} in C_K are in \mathcal{L} and $\prod_{\sigma_{ij} \in C_K} f(\sigma_{ij}) > 1$ (resp. < 1) if K is attracting (resp. repelling);
2. some σ_{ij} in C_K are not in \mathcal{L}; if K is attracting (resp. repelling), all such σ_{ij} are S_α’s (resp. S_ω’s).
Our main result is

Theorem 2.1. Let \mathcal{F} be a one-dimensional oriented topological foliation on S^2 such that

(H1) it has only a finite number of closed orbits and it has finitely many singularities; every singularity is either of finite type or topologically equivalent to a node;

(H2) if p_1, p_2, \cdots, p_s, are the finite type singularities of \mathcal{F}, then, for every such p_i there exists a topological blown up \mathcal{F}_i of p_i such that $(\mathcal{F}, (\mathcal{F}_1, \mathcal{F}_2, \cdots, \mathcal{F}_s))$ satisfies the separatrix cycle condition.

Then \mathcal{F} is topologically equivalent to a polynomial vector field.

Remark 2.1. S. Schecter and M. F. Singer state and prove the above theorem in the case that \mathcal{F} is induced by a C^1-vector field and every \mathcal{F}_i is a tight blown up of p_i. Nevertheless, within the C^1-class, their proof applies to the situation stated here. This fact was observed in [4, Example 3 – page 423].

The proof of the following proposition follows immediately from the Smoothing Theorem and the Smoothing Corollary of [2].

Proposition 2.1. Let \mathcal{F} be a continuous one dimensional orientable foliation with singularities on the 2-sphere S^2. If the set of singularities of \mathcal{F} is compact, then there exists a C^∞ vector field X on S^2 which is topologically equivalent to \mathcal{F}.

Proof of Theorem 2.1. It follows from Proposition 2.1 that the exists a smooth vector field Y topologically equivalent to \mathcal{F}.

By Schecter-Singer main result [4] (see Remark 2.1) Y is topologically equivalent to a polynomial vector field.

References

