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1. Introduction

Classical results in representation theory establish very interesting
connections between iterated tilted algebras and trivial extensions of
finite dimensional algebras, particularly deep and useful in the Dynkin
case. Recent results show that there are also interesting connections
betweeen iterated tilted algebras and cluster tilted algebras. The aim
of this article is to describe these connections, and show that, though
the situations are quite different there are strong analogies between
them.

The relation between the properties of the trivial extension of a finite
dimensional algebra Λ and those of the algebra itself have been the
object of study by many mathematicians. Early work in this direction
was done by H. Tachikawa (1980) who proved that the hereditary
algebra Λ is of finite representation type if and only if the trivial
extension T (Λ) of Λ is of finite representation type. On the other
hand, K. Yamagata proved when Λ has oriented cycles then T (Λ) is
of infinite representation type (1981).

The connections with tilting theory are given by two theorems, due
to Hughes and Waschbüsch (1983) and to Assem, Happel and Roldán
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(1984), respectively. The first proves that the trivial extension of Λ
is of finite representation type and Cartan class Q if and only if there
exists a tilted algebra Λ′ of Dynkin type Q such that T (Λ) ≃ T (Λ′).
The second establishes that T (Λ) is of finite representation type and
Cartan class Q if and only if there exists a tilted algebra Λ′ of Dynkin
type Q such that T (Λ) ≃ T (Λ′).

A combinatorial method to decide wether two schurian algebras Λ
and Λ′ have isomorphic trivial extensions was given by Fernández in
[23] (1999) using the notion of admissible cut. A subset ∆ of the set
of arrows of a quiver Q is called an admissible cut if each oriented
minimal (or chordless) cycle of Q contains exactly one arrow of ∆. A
quotient by an admissible cut of an algebra Λ is defined as the quotient
of Λ by the ideal generated in Λ by an admissible cut in the quiver
of Λ. It is proven in [23] that two schurian algebras Λ and Λ′ have
isomorphic trivial extensions if and only if Λ′ is the quotient of T (Λ)
by an admissible cut. Thus iterated tilted algebras of Dynkin type
coincide with quotients of trivial extensions of finite representation
type by admissible cuts.

Combining these results Fernández classified all trivial extensions of
finite representation type, giving a simple method to decide if an alge-
bra is iterated tilted of a given Dynkin type. Moreover, she obtained,
under a unified approach, the classification results for iterated tilted
algebras of types An, Dn and E6 obtained by different auhors with
other methods ([4], [10], [34], [43]).

In connection with cluster algebras, defined and studied by Fomin and
Zelevinski in 2000, cluster categories were defined by Buan, Marsch,
Reinecke, Reiten and Todorov and a tilting theory was developed for
them [16]. To each hereditary algebra a cluster algebra can be asso-
ciated, in such a way that cluster variables correspond to indecom-
posable rigid (or exceptional) objects and clusters to cluster tilting
objects in the cluster category of H.

Since then, the theory has had an extraordinary developement in
different directions, with interesting connections to several areas of
mathematics. We are interested here in the relation between cluster
tilted algebras, relation extensions and iterated tilted algebras. Clus-
ter tilted algebras are defined as endomorphism rings of cluster tilting
objects in the cluster category of a hereditary algebra H.
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The connection of cluster tilted algebras with tilted algebras was
studied by Assem, Brüstle and Schiffler, and is given using the no-
tion of relation extension. Given an algebra Λ of global dimension at
most two, the relation extension of Λ is the trivial extension R(Λ) =
Λ Ext2Λ(DΛ,Λ). They prove that an algebra is cluster tilted if and
only if it is ismorphic to the relation extension of a tilted algebra.
This result resembles the first of the results connecting tilting theory
and trivial extensions above mentioned, but it is in some sense more
general, since no assumption about representation type is made.

As for trivial extensions, there is also a connection between cluster
tilted algebras and iterated tilted algebras, but in this case only with
those of global dimension at most two [1, 11, 31]. Given an iterated
tilted algebra B, then B = EndDb(H)(T ), where Db(H) denotes the
derived category of a hereditary algebra H and T is a tilting complex
in Db(H). When gldimB ≤ 2, then T defines a cluster tilting object
in the cluster category C(H) and C = EndC(T ) is a cluster tilted
algebra. Moreover, there exists a sequence of algebra homomorphisms

B → C
π−→ R(B) → B whose composition is the identity of B and

Ker(π) ⊆ rad2C. In particular, C and R(B) have the same quivers.

In contrast with the situation for trivial extensions, it is not required
here that B is of Dynkin type. However, it is not true in general that
C ≃ R(B), not even in the Dynkin case.

Finally, we turn our attention to admissible cuts of cluster tilted alge-
bras of finite representation type, where the following result, proven in
[11], holds: An algebra B with gldimB ≤ 2 is iterated tilted of Dynkin
type Q if and only if it is the quotient of a cluster-tilted algebra of
type Q by an admissible cut.

These results can be applied to classify cluster tilted algebras of finite
type. In fact, combining them Bordino, Fernández and Trepode clas-
sified those of type Ep, as communicated by Fernández in ICRA XII,
2008.

2. Trivial extensions and relation extensions

2.1. Quivers and path algebras. Given a quiver Q, we will de-
note by Q0 the set of vertices, and by Q1 the set of arrows of Q.
For an arrow α, s(α) and t(α) denote the starting and terminating
vertices of α, respectively. For a field k and a quiver Q, let kQ be
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the path algebra of Q, whose underlying k-vector space has the set of
all paths as a basis and with multiplication induced linearly by the
concatenation of paths, that is, if δ = βs · · ·β1 and γ = αr · · ·α1 then
δγ = βs · · ·β1αr · · ·α1 if s(β1) = t(αr), and δγ = 0 otherwise. For
each vertex i ∈ Q0 , let ei be the associated trivial path of length 0.
The radical is the ideal of kQ generated by all paths of positive length
and will be denoted by rad kQ.

We will assume in all that follows that k is an algebraically closed
field. By an algebra we mean a finite dimensional k-algebra, which
we also assume to be basic and indecomposable. Such an algebra Λ
is isomorphic to the quotient of a path-algebra by an admissible ideal
I, that is Λ ≃ kQ/I, where Q is a quiver, I is contained in rad2 kQ
and the quotient kQ/I is finite-dimensional. The pair (Q, I) is called
a presentation for Λ. Given an element x in kQ, we will indicate also
by x the corresponding element in Λ. By a relation ρ of kQ/I we
mean an element of I which is a linear combination of paths starting
at the same vertex s(ρ) and stopping at the same vertex t(ρ). For each
i ∈ Q0, Si will denote the simple Λ-module associated to i, and Pi

and Ii the projective cover and injective envelope of Si, respectively.

All modules considered are finitely generated left modules, modΛ de-
notes the category of finitely generated modules, and indΛ is the full
subcategory of modΛ consisting of one copy of each indecomposable
Λ-module. Moreover, if M is a Λ-module, we denote by addM the full
subcategory of modΛ whose objects are the direct sums of summands
of M .

A subquiver Q′ of a quiver Q is called a chordless (or minimal) cycle
if Q′ is full, connected and in every vertex of Q′ exactly two arrows
of Q′ incide (starting or stopping there). In case exactly one arrow
stops and the other starts the cycle is called oriented.

2.2. Trivial extensions. Let Λ be an artin algebra and M a Λ−Λ-
bimodule. We recall that the trivial extension Λ M of Λ by M is the
algebra whose underlying k-vector space is Λ×M with multiplication
(λ,m) · (λ′,m′) = (λλ′, λm′ + mλ′). We will be interested in the
following two cases.

When M = DΛ is the dual of the algebra Λ, then T (Λ) = Λ DΛ
is called the trivial extension of Λ. This is a symmetric algebra, and
therefore it is selfinjective. Thus all indecomposable non-projective
T (Λ)-modules have infinite projective dimension, so the homological
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properties of Λ and T (Λ) are very different. However, there are deep
connections between the representation theories of Λ and T (Λ).

When gldimΛ ≤ 2, the trivial extension R(Λ) = Λ Ext2Λ(DΛ,Λ) is
called the relation extension of Λ. This algebra was considered and
studied by Assem, Brüstle and Schiffler in [2], where they prove that
cluster tilted algebras are relation extensions of tilted algebras.

Trivial extensions are particular cases of split extensions. We recall
that an algebra Γ is a split extension of an algebra Λ by the ideal M
of Γ if there exist a split surjective algebra homomorphism π : Γ → Λ
with kernel M , and the ideal M is nilpotent. In this case, M ⊆ radΓ,
and there is an algebra homomorphism σ : Λ → Γ such that πσ = idΛ.
Relations for split extensions have been studied in [3]. In particular,
if Λ is identified with a subalgebra of Γ through σ, a presentation
for Γ can be chosen so that the arrows of Λ are arrows of Γ and the
relations for Λ are also relations for Γ.

To describe the quiver of the trivial extension Λ M we will need the
following facts, whose proof is straightforward.

Lemma 2.1. Let Λ be an algebra and M a Λ− Λ-bimodule. Then

(a) rad Λ M = (r,M), where r denotes the radical of Λ.

(b) rad2 Λ M = (r2, rM +Mr)

(c) radΛ M/ rad2 Λ M and (r/r2,M/(rM + Mr)) are isomorphic
vector spaces.

Let Λe = Λ ⊗ Λop. Then M is a Λe-module, with radical rM + Mr
and M/(rM+Mr) = topΛeM . Thus we get from (b) that the vertices
of Q

Λ M
are the vertices of QΛ. On the other hand, it follows from

(c) that

dimk((ej, 0). radΛ M/ rad2 Λ M.(ei, 0) = dimk(ej .r/r
2.ei+ej . topΛeM .ei).

Thus the arrows from i to j of Q
Λ M

are obtained by adding
dimk(ej . topΛeM .ei) arrows to the arrows from i to j of Λ.

To describe the quiver of the trivial extension we observe that ej . topΛeDΛ .ei
≃ ei. D(socΛeΛ) .ej .

Proposition 2.2. [25, Proposition 2.2] Let QΛ be the quiver of Λ,
then the quiver of T (Λ) is given by

(a) (QT (Λ))0 = (QΛ)0
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(b) (QT (Λ))1 = (QΛ)1 ∪ {βp1 , . . . , βpt}, where {p1, . . . , pt} is a k-basis
of socΛeΛ consisting of linear combinations pi of paths with the same
origin s(pi) and the same end t(pi), and βpi is an arrow from t(pi) to
s(pi).

We say that a path γ in Λ is maximal if γ ̸= 0 and γ.α = 0 = αγ in Λ,
for any arrow α of QΛ. We observe that maximal paths are in socΛ,
so it follows from (b) in the the above proposition that all arrows
in QT (Λ) are in oriented cycles. Moreover, when Λ is schurian, that
is, dimk HomΛ(P, P

′) ≤ 1 for every pair of indecomposable projective
modules P, P ′, then socΛ is generated by the maximal paths.

Example 2.3. For the algebra Λ we indicate the quiver of T (Λ).

Q :
Λ

Q    :
T(Λ)

α α α

α

α1 2

3

4 5
α α

α
αα1 2

3

4 5

β

βββ

ρ

ρρρ
1 2

3

4

As usual, the dotted lines indicate the relations for Λ. In this case,
{p1 = α1, p2 = α4α2, p3 = α4α3, p4 = α5} is a basis of soc Λ
consisting of maximal paths.

For algebras Λ whose quiver has no oriented cycles and such that
gl.dim.Λ ≤ 2 the ordinary quiver of the relation extension is described
in [2]. Let Λ be such an algebra and let M = Ext2Λ(DΛ,Λ). Then
M/rM
≃ Ext2Λ(socDΛ,Λ/rΛ), and the canonical map Λ → Λ/rΛ and the
inclusion soc Λ → Λ induce an epimorhism M → M/rM . Moreover,
ej .M/rM.ei ≃ Ext2Λ(Si, Sj) (See [2, section 2]).

The dimension of Ext2Λ(Si, Sj) has been described by Bongartz in [14,
1.2] in terms of the number of relations for Λ when the quiver of Λ
has no oriented cycles, in the following way. Let R be a system of
relations for Λ, that is, a minimal set of relations generating I as a
two sided ideal of kQΛ. Then the cardinality of R∩ (ej .I.ei) are equal
dimk Ext

2
Λ(Si, Sj).

We describe next the quiver of QR(Λ).
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Proposition 2.4. [2, Theorem 2.6]. Let Λ = kQΛ/I be an algebra
such that QΛ has no oriented cycles and gldimΛ ≤ 2. Let R be a
system of relations for Λ. Then the quiver of R(Λ) is given by:

(a) (QR(Λ))0 = (QΛ)0

(b) For i, j ∈ QΛ, the arrows from i to j in (QR(Λ))1 are the arrows
from i to j in QΛ plus Card(ei.R.ej) additional arrows.

This is, when QΛ has no oriented cycles, the vertices of the relation
extension R(Λ) are the vertices of Λ, and the arrows of R(Λ) are
obtained by adding to the arrows of Λ one arrow from i to j for each
relation from j to i in a system of relations for Λ, for any i, j.

Example 2.5. Consider again the algebra Λ of Example 2.3

Q :
Λ

Q    :
R(Λ)

�ρ ρ
1 2

Here, the arrows ρ1 and ρ2 correspond respectively to the relations
α2α1 = 0 and α5α4 = 0.

Now we turn our attention to the relations for these algebras, looking
first at the trivial extension of Λ. The relations for T (Λ) are described
in [25] for algebras Λ whose oriented cycles are zero in Λ. In the
particular case when rad2(Λ) = 0 they were described by Yamagata
in [47]. When Λ is schurian and has no oriented cycles the relations
for T (Λ) were studied by Fernández in [23], and can also be obtained
from the relations for the repetitive algebra, given by Asashiba in [6].

Recall that the algebra Λ is called triangular if the quiver of Λ has no
oriented cycles.

For simplicity, we will assume that the algebra Λ is schurian, trian-
gular, and such that parallel paths in QΛ are equal in Λ. Recall that
every path γ in T (Λ) is contained in an oriented chordless cycle C.
Following [25], we will say that the supplement of γ in C is es(γ) if
all the arrows of C are arrows of γ, otherwise it is the path consisting
of the remaining arrows of C. We can describe now the relations for
T (Λ).
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Proposition 2.6. [25, Corollary 3.2] Let Λ = kQΛ/I be a schurian
triangular algebra such that parallel paths in QΛ are equal in Λ. Then
Λ = kQΛ/IT (Λ) where the admisssible ideal IT (Λ) is generated by:

(i) the paths consisting of n + 1 arrows in an oriented chordless
cycle of length n,

(ii) the paths whose arrows do not belong to a single oriented
chordless cycle, and

(iii) the difference γ−γ′ of paths γ, γ′ with the same origin and the
same endpoint and having a common supplement in oriented
chordless cycles of QT (Λ).

We observe that the stated relations are formulated in terms of the
cycles of T (Λ). Thus T (Λ) is determined by its quiver, provided the
hypothesis of the above proposition hold.

Example 2.7. Let Λ be as in Example 2.3. Then the relations for
T (Λ) are:

All compositions of three arrows in the two cycles of lenth two, and
of four arrows in the two cycles of length three, are zero.

βp1βp2 = 0, βp2βp4 = 0, βp3βp4 = 0, α2α1 = 0, α5α4 = 0

Finally, since the paths α3βp3 , α2βp2 have the same suplement α4 in
the cycles α4α3βp3 and α4α2βp2 respectively, we get the commutativ-
ity relation:

α3βp3 = α2βp2 .

We now turn again our attention to the relation extension. The re-
lations for R(Λ) are not known in general. However, they can be
computed in many particular cases, as the following example illus-
trates.

Example 2.8.

Q :
Λ

Q    :
R(Λ)

α α

β β

γ

1 2

1 2

α α

β β

γ

1 2

1 2

ρ
1

2

3

4 5
1

2

3

4 5
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We know R(Λ) is a split extension of Λ, thus the relations for Λ are
also relations for R(Λ), as observed at the beginning of 2.2 . So we
only have to determine if the paths involving ρ are zero. We first
consider ργ. The indecomposable projective Λ-modules are:

P1 =
1
2 3
4

, P2 = 2
4 , P3 = 3

4 , P4 = S4 , P5 = 5
4 .

Then the exact sequence 0 → P4

[α2
β2

]
−−−→ P2⊕P3

[α1,−β1]−−−−−→ P1 → S1 → 0
determines an element in Ext2Λ(S1, S4) = Ext2Λ(I1, P4) corresponding
to the relation ρ = α2α1 − β2β1 = [ α1−β1 ]

[ α2
β2

]
= 0. Let V be the

image of [ α1−β1 ]. If we identify Ext2Λ(S1, P4) with Ext1Λ(V, P4), we
get that the relation ργ corresponds to the pushout of the sequence

0 → P4

[α2
β2

]
−−−→ P2 ⊕P3 → V → 0 and the morphism γ : P4 → P5. This

pushout sequence splits if and only if the map γ factors through
[ α2
β2

]
.

This is not the case, because the only map from P2 ⊕ P3 to P5 is the
zero map. Thus ργ ̸= 0.

In a similar way, we get that ρα2 = 0, because α2 : P4 → P2 co-
incides with the composition [ 1 0 ]

[ α2
β2

]
. Also, ρβ2 = 0, because

β2 = [ 0 1 ]
[ α2
β2

]
.

We also get that α1ρ = 0 and β1ρ = 0, using an injective copresenta-
tion of S4.

Therefore a system of relations for R(Λ) is α2α1−β2β1 = 0, ρα2 = 0,
ρβ2 = 0, α1ρ = 0 and β1ρ = 0.

An example is given in [2, Example 2.8] where the relations for the
relation extension are calculated with a different method.

3. Iterated tilted algebras and trivial extensions

We recall that a module M ∈ modΛ is a tilting module if M has pro-
jective dimension at most one, Ext1Λ(M,M) = 0 and M decomposes
into precisely n pairwise non-isomorphic direct summands, where n is
the number of pairwise non-isomorphic simple Λ-modules, or equiva-
lently the number of vertices of the quiver of Λ.

IfH is a hereditary algebra andM a tiltingH-module then EndopH (M)
is called a tilted algebra. Since the opposite of a tilted algebra is again a
tilted algebra we will consider the endomorphism algebras themselves
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instead of their opposites. An algebra B is called an iterated tilted
algebra of type Q if there exist algebras Λ1,Λ2, . . . ,Λt such that Λ1

is hereditary with quiver Q, Λt = B and for each i = 1, . . . , t − 1 we
have Λi+1 ≃ EndΛi(Mi) for some tilting Λi-module Mi.

The connection of tilted and iterated tilted algebras with trivial ex-
tensions is very interesting and was studied by many mathematicians.
Results in this direction were first proven by Tachikawa and Waka-
matsu in the hereditary case. We will be particularly interested in
two theorems, one of them relates trivial extensions and tilted alge-
bras and is due to Hughes and Waschbüsh. The other, due to Assem,
Happel and Roldán, studies the relation of trivial extensions with
iterated tilted algebras.

In order to state these results we recall the notion of Cartan class
of a selfinjective algebra of finite representation type, introduced by
Riedtmann in [39]. The stable Auslander-Reiten quiver of such an
algebra Γ is isomorphic to ZQ/G, where Q is a Dynkin diagram and
G is a group of automorphisms of ZQ, such that the action of G on
ZQ is admissible. The Dynkin type of Q is uniquely determined and
is called the Cartan class of Γ. (See [39])

We can state now the mentioned theorems, which will be important
in the sequel.

Theorem 3.1. [32] The following conditions are equivalent for a finite
dimensional algebra Λ:

(a) T (Λ) is of finite representation type and Cartan class Q.
(b) There exists a tilted algebra Λ′ of Dynkin type Q such that

T (Λ) ≃ T (Λ′).

Theorem 3.2. [5] The following conditions are equivalent for a finite
dimensional algebra Λ:

(a) T (Λ) is of finite representation type and Cartan class Q.
(b) Λ is iterated tilted of Dynkin type Q.

Next we will show how these two theorems can be combined with
the description of the quiver and the relations for T (Λ), to decide
both if Λ is iterated tilted of Dynkin type Q and if T (Λ) is of finite
representation type of Cartan class Q. In order to apply the first
theorem it is important to know when T (Λ) ≃ T (Λ′), for two given
algebras Λ and Λ′.
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We observe first that the quiver of T (Λ) is constructed from the quiver
of Λ by adding some arrows, and there is one such arrow in each
oriented chordless cycle of T (Λ). Clearly, by deleting these arrows in
T (Λ) we obtain Λ. We would like to know what subsets of arrows of
T (Λ) can be deleted to obtain an algebra whose trivial extension is
isomorphic to T (Λ).

Definition 3.3. A subset of the set of arrows ∆ of a quiver Q is called
admissible cut of Q if it contains exactly one arrow of each oriented
chordless cycle in Q.

Definition 3.4. Let Λ = kQΛ/I be an algebra given by a quiver QΛ

and an admissible ideal I. A quotient of Λ by an admissible cut of Λ
is an algebra of the form kQΛ/⟨I ∪∆⟩ where ∆ is an admissible cut
of QΛ.

The following theorem gives necessary and sufficient conditions for
two trivial extensions to be isomorphic, under the assumption that
one of them is schurian triangular.

Theorem 3.5. [23, Corolario 1.3.19] Let Λ be a schurian triangular
algebra. Then an algebra Λ′ is an an admissible cut of T (Λ) if and
only if T (Λ) ≃ T (Λ′).

The proof uses elementary arguments. But the situation turns more
complicated in the general case, without the assumption that the al-
gebra Λ is schurian and triangular. A generalization of the above
theorem has been obtained in [24] for algebras whose oriented cycles
are zero. However, the arguments used in the schurian triangular case
do not apply in this case, and it is necessary to use the following result,
due to Wakamatsu:

Theorem 3.6. [46]. Let Λ and Λ′ be artin algebras. Then T (Λ) ≃
T (Λ′) if and only if there exist an artin algebra S and an S − S-
bimodule M such that Λ ≃ S M and Λ′ ≃ S DM .

Given an admissible cut ∆ of an algebra without non-zero oriented
cycles the algebra S and the bimodule M can be described in terms
of ∆, and this is the tool used in [24] to prove one of the implications
of the theorem.

The following example illustrates how these techniques can be com-
bined to decide if an algebra is iterated tilted of Dynkin type.
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Example 3.7. Consider the algebra Λ of Example 2.3, and its trivial
extension.

Q :
Λ

Q    :
T(Λ)

1 2

3

4

5 6

By 3.2, to know if Λ is iterated tilted of Dynkin type we only need
to decide if T (Λ) is of finite representation type. To decide this we
look for an algebra Λ1 such that T (Λ) ≃ T (Λ1) and such that we
are able to determine easily if it is iterated tilted of Dynkin type or
not. To do so we choose the admissible cut of T (Λ) whose arrows are
indicated above with two short parallel segments || , and consider the
corresponding quotient Λ1.

Q  :
Λ

Q     :
T(Λ  )

1 2 3

4

5 6

1 1

Here, Λ1 is a hereditary algebra of Dynkin type E6. It follows then
that T (Λ1) is of finite representation type of Cartan class E6 (by
3.1 or 3.2). Since Λ1 is a quotient of T (Λ) by an admissible cut
we can apply 3.5 to conclude that T (Λ) ≃ T (Λ1). Thus T (Λ) is of
finite representation type and Cartan class E6 and using again 3.2 we
conclude that Λ is iterated tilted of type E6.

Now we can find other iterated tilted algebras of the same Dynkin
type by choosing other admissible cuts of T (Λ), and considering the
corresponding quotients. For example, the algebra Λ2 given below is
iterated tilted of type E6, being a quotient of T (Λ) ≃ T (Λ1) by the
admissible cut indicated in the last figure.

 Λ  :

1 2

3

4

5 6

2

These techniques were used by Fernández in [23] to give a complete
classification of trivial extensions of finite representation type under a
unified approach, as well as of iterated tilted algebras of types An, Dn
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and E6. Moreover, she gave a method to decide easily if an algebra
is iterated tilted of a given Dynkin type. Finding a quotient by an
admissible cut Λ′ of T (Λ) whose representation type and Dynkin class
can be determined is not always as simple as in the previous example.
A very useful tool to do this was the list of minimal algebras of in-
finite representation type given by Bongartz [13] and by Happel and
Vossieck [30]. Using this list, as well as different reduction techniques
the complete classification was acchieved.

Using results of Assem, Nehring and Skowroński in [7] these ideas can
be applied in many cases to decide if an algebra is iterated tilted of
type D̃n or Ẽp.

Many of these classification results have been obtained by other math-
ematicians using different techniques. The first related results can be
found in the early work of Riedtmann, where she classified selfinjective
algebras of finite representation type [39, 40, 41]. The classification
of iterated tilted algebras of Dynkin type An was done by Assem and
Happel in [4]. The Dn case was studied by Assem and Skowroński
in [10] and also, through the use of derived categories, by Keller ([33]
). The classification for E6 was done by Happel in his study of tiltig
sets in cylinders [28], and Roggon completed the cases Ep, by means
of invariants assigned to the algebras [43].

4. Cluster algebras and relation extensions of iterated
tilted algebras

In this section we study the connection between cluster tilted alge-
bras and iterated tilted algebras of global dimension at most two.
The notion of cluster algebra was defined and studied by Fomin and
Zelevinski in 2000. In connection with it, cluster categories were de-
fined by Buan, Marsch, Reinecke, Reiten and Todorov, who developed
a tilting theory for them [16]. We start by recalling definitions and
known results which will be needed later.

Let H be a finite dimensional hereditary algebra over the algebraically
closed field k. We denote by Db(H) the bounded derived category of
finitely generated H-modules [29]. Since H his hereditary each inde-
composable object in Db(H) is isomorphic to a complex concentrated
in one degree (stalk complex). We will then identify modΛ with the
full subcategory of Db(H) of the complexes concentrated in degree 0.
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Since H has finite global dimension, then Db(H) is a triangulated cat-
egory, and has Auslander-Reiten triangles. We will denote by τDb(H),

or just by τ , the Auslander-Reiten translation in Db(H) and by [1] the
shift (or suspension) functor. Then F = τ−1[1] is an autoequivalence.

The Auslander-Reiten quiver Γ of Db(H) has been decribed by Happel
in [29]. If M ∈ modH is an indecomposable non-projective module,
then τH(M) = τDb(H)(M), so Γ contains a copy of ΓH , for every

i ∈ Z. Moreover, τDb(H)(Pi[k]) = Ii[k − 1]. When the quiver Q of
H is Dynkin then Γ consists of a single component isomorphic to the
translation quiver ZD ([29, Ch.1, Cor. 5.6]).

If Q is not Dynkin then the structure of Γ is very different. Denote by
P, (resp. I) the preprojective (resp. preinjective) component of the
Auslander-Reiten quiver of H and byR the full subcategory of modH
given by the regular components. For each r ∈ Z the regular part R
gives rise to R[r], given by the complexes X ∈ Db(H) concentrated in
degree r with Xr ∈ R. Moreover, for each r ∈ Z there is a transjective
component I[r−1]∨P[r] of Γ which we shall denote by R[r− 1

2 ], and
each component of Γ is contained in R[r] for some half-integer r.

The cluster category of H is the orbit category C = Db(H)/FZ (see
[16]). Thus the objects of C are the objects of Db(H) and the mor-
phism spaces are given by

HomC(X,Y ) =
⊕
i∈Z

HomDb(H)(X,F iY )

with the natural composition. Then C has a natural triangulated
structure [34], and the Auslander-Reiten formula holds both in Db(H)
and in C. That is,

HomDb(H)(Y, τX) ≃ DExt1Db(H)(X,Y )

and

HomC(Y, τX) ≃ DExt1C(X,Y ).

The notion of tilting complex was defined by Happel in [29].

Definition 4.1. A complex T in Db(H) is a tilting complex if
HomDb(H)(T, T [i]) = 0 for all i ̸= 0, and the only complex X such

that HomDb(H)(T,X[i]) = 0 for all i is X = 0.
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It was proven by Reiten and Van den Berg ([37, Cor. 3.3 and Lemma
3.5] that the second condition can be replaced by

(T2) The number of nonisomorphic summands of T coincides with
the number of nonisomorphic simple H-modules.

Definition 4.2. An object T in CH is called a cluster tilting object if
HomC(T, T [1]) = 0 and condition (T2) holds.

Tilted algebras, that is, endomorphism rings of tilting modules, have
played an important role in the representation theory of algebras. It
was proven in [29, Cor. 5.5 of Chap. 4] and [38], that the endomor-
phism ring of a tilting complex in the derived category is an iterated
tilted algebra, and each iterated tilted algebra is of this form. Clus-
ter tilted algebras are defined as endomorphism rings of cluster tilting
objects in C. When A is the cluster algebra associated to H, then the
quivers of the cluster tilted algebras arising from C coincide with the
quivers of the exchange matrices associated to A.

Let T be an H-module. Then T can be considered both as an object
in Db(H) and as an object in C. We observe that T is tilting in modH
if and only if T is a tilting complex in Db(H), if and only if T is a
cluster tilting object in C.
On the other hand, it is proven in [16] that any cluster tilting object
in C can be represented by a tilting module over a hereditary algebra
H ′ derived equivalent to H. Therefore, if C is a cluster tilted algebra
there exists a hereditary algebra H ′ such that C is isomorphic to the
endomorphism ring of a tilting H ′-module in Db(H ′) [16, 3.3].

If T is a tilting complex in Db(H), it is not always true that T defines
a cluster tilting object in C. However, if we further assume that the
iterated tilted algebra has global dimension at most two, then T is
also tilting in C. This fact was proven by Barot, Fernández. Pratti,
Platzeck and Trepode in [11, Cor. 3.15], and independently by Osamu
Iyama in [31, Thm. 1.22] and by Claire Amiot in [1, 4.10] using
different techniques. Our next aim is to discuss the central ideas of
the proof of this result, following the approach in [11].

We start by defining a procedure, the “rolling of tilting complexes”,
which associates to each tilting complex T a new complex ρ(T ) such
that T and ρ(T ) define the same object in the cluster category C. The
construction depends on wether the quiver is Dynkin or not.
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A first approach to define ρ is to choose some summands Ti of T and
replace them by F−1(Ti). However, this does not always lead to a
tilting complex. The following lemma gives sufficient conditions for
the new module to be a tilting complex.

Lemma 4.3. [11, Lemma 3.7] Let T = T ′ ⊕ X be a tilting complex
in Db(H) such that HomDb(H)(X,T ′) = 0 and let B = EndDb(H)(T ).

If gldimB ≤ 2, then T̃ = T ′ ⊕ F−1X is a tilting complex in Db(H) if
and only if HomDb(H)(τX, T ′[k]) = 0 for k = 0,−1.

So we consider a tilting complex T in Db(kQ) and look for a summand
X of T satisfying the conditions in the lemma.

We assume first that Q is a Dynkin quiver. We denote by ≤ the partial
order induced in Γ = ZQ by the arrows. Since T =

⊕n
i=1 Ti has only

finitely many summands we can easily find a section Σ = {Σ1, . . . ,Σn}
such that T ≤ Σ, that is, Ti ≤ Σj for all i and j. Here, by a section
we mean a set of representatives Σ1, . . . ,Σn of the τ -orbits of Γ such
that Σ1, . . . ,Σn induce a connected subquiver of Γ, and n is the the
number of vertices in the quiver Q. If Σj is maximal in Σ and Σj ̸∈
{T1, . . . , Tn} then Σ′ = Σ \ {Σj} ∪ {τΣj} is also a section satisfying
T ≤ Σ′. After finitely many steps we get a section Σ(T ) such that
T ≤ Σ(T ) and all maximal elements in Σ(T ) belong to addT . Then
Σ(T ) is uniquely defined by T .

Definition 4.4 (Rolling of tilting complex, the Dynkin case). With
the previous notations, let X be the sum of those summands of T
which belong to Σ(T ) and T ′ a complement of X in T . Then define
the rolling of T to be ρ(T ) = T ′ ⊕ F−1X.

Now consider the case where Q is not Dynkin. As we mentioned at
the beginning of this section, Db(kQ) is composed by the parts R[r]
for r ∈ Z/2. Now, write T =

⊕
a∈Z/2 TR[a], where TR[a] ∈ R[a].

Definition 4.5 (Rolling of tilting complex, the non-Dynkin case).
With the previous notation let m be the largest half-integer such that
TR[m] is non-zero. Then define X = TR[m] and T ′ to be the comple-

ment of X in T . Define the rolling of T to be ρ(T ) = T ′ ⊕ F−1X.

Proposition 4.6. Let T be a tilting complex in Db(H) such that
gldimEndDb(H)(T ) ≤ 2. Then ρ(T ) is again a tilting complex.
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Proof. Assume that H = kQ, and consider first the case when Q
is a Dynkin quiver. It follows from the definition of Σ(T ) that
HomDb(H)(X,T ′) = 0. Let now V be an indecomposable module

in the section τΣ. Then τ−1V ∈ Σ, so there is a maximal element T1

in Σ such that τ−1V ≤ T1. So HomDb(H)(τ
−1V, T1) ̸= 0, since both

τ−1V and T1 belong to Σ. Since all maximal elements in Σ belong to
addT it follows that T1 ∈ addT . Then, using the Auslander-Reiten
formula, we get

Ext1Db(H)(T1, V ) ≃ D(HomDb(H)(τ
−1V, T1)) ̸= 0.

This proves that V is not in addT , because T is a tilting complex
and therefore Ext1Db(H)(T, T ) = 0. Thus τX has no summands in

addT , because X ∈ addΣ. It follows from the definition of T ′ that
HomDb(H)(τX, T ′) = 0 and HomDb(H)(τX, T ′[−1]) = 0. Then we get

from the preceding lemma that ρ(T ) is a tilting complex in Db(H).

When the quiver Q is not Dynkin the proof is easier, since it is not
difficult to prove that the conditions for ρ(T ) to be tilted given in
Lemma 4.3 are satisfied.

�

Given an iterated tilted algebra B, there are a hereditary algebra H
and a tilting complex T in Db(H) such that B = EndDb(H)(T ). It can

be proven that EndDb(H)(ρ(T )) does not depend on the choice of H

or T ([11]). Then we can give the following definition.

Definition 4.7. The rollling of the iterated tilted algebra B is the
endomorphism algebra ρ(B) = EndDb(H)(ρ(T )), where H is a heredi-

tary algebra such that B = EndDb(H)(T ) and T a tilting complex in

Db(H).

4.1. Iterated rolling. Let T be a tilting complex in DbH such that
the global dimension of B = EndDb(H)(T ) is at most two. We proved
that the rolling of T is again a tilting complex defining the same object
as T in the cluster category C. We will see next that it is possible to
iterate the rolling procedure, and find a natural number n such that
ρn(T ) is a tilting module over an algebra H ′ derived equivalent to H.
This will prove that ρn(T ) defines a cluster tilting object in C, so T
also does, because rolling preserves elements of C.
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To be able to apply the previous proposition to ρ(T ) we need the
global dimension of ρ(B) = EndDb(H)(ρ(T )) to be at most 2. This is
true, and we state it in the following proposition.

Proposition 4.8. [11, Prop. 3.11] Let B be an iterated tilted algebra.
If gldimB ≤ 2 then gldim ρ(B) ≤ 2.

This shows that the iteration procedure can be carried on. Assume
next thatH = kQ, with Q Dynkin. Then, for a section Σ in Db(H) we
consider the hereditary algebra H(Σ) whose indecomposable injective
modules (concentrated in degree zero) are the objects in Σ. This
algebra is derived equivalent to H. Next, for each tilting complex
T in Db(H) we define the natural number nΣ(T ) as the sum of the
lengths all the paths from the indecomposable summands of T which
are not H(Σ)-modules to the other indecomposable summands of T .
Then nΣ(T ) = 0 if and only if T is an H(Σ)-module.

We denote by Σ(T ) the section used in the definition of ρ(T ). For for
each h ≥ 0, let nh(T ) = nΣ(ρh(T ))(ρ

h(T )). Then nh(T ) > 0 implies

that nh+1(T ) < nh(T ), and nh(T ) = 0 implies nh+1(T ) = 0 (see [11,
Lemma 3.3]).

The following proposition will be important in the sequel.

Proposition 4.9. Let H be a hereditary algebra and T be a tilting
complex in Db(H) such that gldimEndDb(H)(T ) ≤ 2. Then there

exists a natural number n such that ρn(T ) is a tilting module over an
algebra derived equivalent to H. Moreover, if ρk(T ) is such a tilting
module for some k, then ρk+1(T ) has the same property.

Proof. First consider the case when the quiver Q is Dynkin. With
the notations of the preceding paragraph, there is a natural number
n such that nk(T ) = 0 for all k ≥ n. Then ρk(T ) is a module over the
hereditary algebra H(Σ(ρk(T )).

The proof in the non Dynkin case is based in the fact that, for suffi-
ciently large h, ρh(T ) belongs to R[p]∪R[p+ 1

2 ] for some half integer
p (see [11, Theorem 1.2]). �

Using the fact that tilting modules define cluster tilting objects in C,
and since T and ρh(T ) define isomorphic objects in C, we obtain the
following corollary.
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Corollary 4.10. ([11, Cor. 3.15], [31, Thm. 1.22], [1, 4.10]) Let T be
a tilting complex in Db(H) such that gldimEndDb(H)(T ) ≤ 2. Then
T defines a cluster tilting object in the cluster category C of H and
EndC(T ) is a cluster tilted algebra.

Let B be an iterated tilted algebra with gldimB ≤ 2. Let H be a
hereditary algebra H and T a tilting complex in Db(H) such that B ≃
EndDb(H)(T ). Then there is a natural number h so that EndC(T ) ≃
R(ρh(B)). As we observed before, ρ(B) doesn’t depend on the choice
of H and T , so EndC(T ) is also independent on such choice, and we
can define the cluster tilted algebra C(B) associated to B to be the
cluster-tilted algebra EndC(T ).

We illustrate the above results with the following example.

Example 4.11. Let Q be a quiver of type A7 with some orientation
and H = kQ. We depict below the Auslander-Reiten quiver Γ of
Db(H), where the symbol vfi indicates the indecomposable summand

Ti of the tilting complex T =
⊕7

i=1 Ti. Moreover, F−1Ti and F−2Ti

are indicated by the symbols vfi• , vfi•• respectively.
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We then have the tilting complexes:

T = T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ T5 ⊕ T6 ⊕ T7

ρ(T ) = T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ T5 ⊕ F−1T6 ⊕ F−1T7

ρ2(T ) = T1 ⊕ T2 ⊕ T3 ⊕ F−1T4 ⊕ F−1T5 ⊕ F−1T6 ⊕ F−2T7

The corresponding iterated tilted algebras Bh = EndDb(H)(ρ
h(T )),

i = 0, 1, 2, are given by the following quivers with relations.

B0 : p p p
p p p p
1 4 5

2 3 6 7

6

?

6
- -

-
B1 : p p p

p p p p
1 4 5

2 3 6 7

6

?

--
�

��	-

B2 : p p p
p p p p
1 4 5

2 3 6 7

6

@
@@I 6

-
�

��	-

The algebra B2 is tilted, and by 4.9 we know that all algebras Bi for
i > 2 are also tilted. Observe that the relation extensions of all the
algebras ρh(B) have the same quiver, which coincides with the quiver
of the cluster tilted algebra C(B) = EndC(T ) and is shown in the
following picture.

p p p
p p p p
6

@
@@I 6

- -

-

�
��	 ?

�
��	

4.2. Relation extensions of iterated tilted algebras and clus-
ter tilted algebras. If T is a tilting complex in Db(H) and B =
EndDb(H)(T ) then we have an equivalence of categories G : Db(H) →
Db(B) derived from Hom(T,−) such that G(T ) = B and G(τT [1]) =
DB (see [29]) . Moreover, ifX and Y are objects of of Db(H) such that
GX andGY areB-modules, then ExtiB(GX,GY ) ≃ HomDb(H)(X,Y [i])
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for all i ∈ Z. Using the functoriality of these isomorphisms and
Serre duality it can be proven that there is an isomorphism of B-
B-bimodules Ext2B(DB,B) ≃ HomDb(H)(T, FT ) (see [2, 3.3]).

Assume moreover that gldimB ≤ 2 and let C(B) = EndC(T ) be the
cluster tilted algebra associated to B. Then

C(B) = EndC(T ) =
⊕
i∈Z

HomDb(H)(T, F
iT )

The summand corresponding to i = 0 is B = EndDb(H)(T ), which is a

subalgebra of C(B). The next is the B-B-bimodule HomDb(H)(T, FT )

≃ Ext2B(DB,B). Therefore we get a projection map

π : C(B) → R(B)

which is a homomorphism of B-B-bimodules.

When T is a tilting module, then B is a tilted algebra and
HomDb(H)(T, F

iT ) = 0 for all i ≥ 2. So the map π : C(B) → R(B) is
bijective, and a straightforward verification shows that it is in fact an
algebra isomorphism. Combining these facts the following result due
to Assem, Brüstle and Schiffler can be proven:

Theorem 4.12. [2, Theorem 3.4] An algebra C is cluster tilted if and
only if there exists a tilted algebra B such that C ≃ R(B).

We turn now our attention to iterated tilted algebras of global di-
mension at most two, and study the relation between their relation
extensions and cluster tilted algebras.

Let B be an iterated tilted algebra. Then there are a hereditary alge-
bra H and a tilting complex T in Db(H) such that B = EndDb(H)(T ).
We have seen that there is homomorphism of B-B-bimodules π :
C(B) → R(B), which in general is not an isomorphism, not even
an algebra homomorphism. However, if we assume moreover that the
global dimension of B is at most two then π is an algebra homo-
morphism whose kernel is contained in rad2C(B), and therefore the
algebras C(B) and R(B) have isomorphic quivers. The proof of this
result is done in several steps, which we will outline next.

First, we need to study the behaviour of relation extensions under
rolling. We assume throughout the rest of this section that gl.dim
B ≤ 2. We denote by Ψ : C(ρ(B)) = EndC(ρ(T )) → EndC(T ) = C(B)
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the canonical isomorphism, given by the direct sum of the following
bijective maps

id: EndC(T
′) → EndC(T

′), σ−1 : HomC(T
′, F−1X) → HomC(T

′, X),

σF : HomC(F
−1X,T ′) → HomC(X,T ′), F : EndC(F

−1X) → EndC(X).

Here σ denotes the shift in the Z-graduation, that is

σ :
⊕

i∈Z
(Y, F iZ) →

⊕
i∈Z

(Y, F i+1Z), (fi)i∈Z 7→ (fi+1)i∈Z,

and we abbreviated (Y,Z) = HomDb(H)(Y,Z).

We recall that the underlying vector spaces of R(ρ(B)) and R(B) can
be identified respectively with

EndDb(H)(ρ(T ))⊕HomDb(H)(ρ(T ), Fρ(T ))

and

EndDb(H)(T )⊕HomDb(H)(T, FT ),

which are also summands of EndC(ρ(T )) and EndC(T ). Then a k-
linear transformation Θ : R(ρ(B)) → R(B) can be defined so that
the following diagram commutes:

EndC(ρ(T ))
Ψ
≃ //

π(ρ(B))
��

EndC(T )

π(B)
��

R(ρ(B))
Θ // R(B)

It can be proven that Θ is a surjective algebra homomorphism and
KerΘ ⊆ rad2 ρ(B). Since Ψ is an isomorphism, the commutativity
of this diagram implies that if π(ρ(B)) is an algebra homomorphism,
then π(B) is also an algebra homomorphism. These results are proven
in [11, Prop. 3.17], and their application to iterated rolling leads to
the following result.

Theorem 4.13. If B is an iterated tilted algebra of gldimB ≤ 2. Let
H be a hereditary algebra and T a tilting complex in Db(H) such
that B = EndDb(H)(T ) and let C(B) be the cluster tilted algebra

EndC(H)(T ). Then there exists a sequence of algebra homomorphisms

B → C(B)
π−→ R(B) → B
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whose composition is the identity map. Moreover, π is an epimor-
phism whose kernel is contained in rad2C(B). In particular C(B)
and R(B) have the same quivers and are both split extensions of B.

Proof. Consider h such that the algebra ρh(B) is tilted of type Q
and C(B) = EndC(ρ

h(T )) is cluster-tilted (Prop. 4.9). Then
π(ρh(B)) : C(B) → R(ρh(B)) is an isomorphism, by 4.12. Hence
by the observation preceding this theorem we get inductively for i =
h− 1, h− 2, . . . , 1, 0 that π(ρi(B)) is an algebra homomorphism. Let
Θi : R(ρi(B)) → R(ρi−1(B)) be the surjective morphism above de-
fined, with kernel contained in rad2R(ρi(B)). Then the composition
Θ1Θ2 · · ·Θh : R(ρh(B)) → R(ρ0(B)) = R(B) has the same proper-
ties, and so does π(B) : C(B) −→ R(B), as follows using the commu-
tativity of the above diagram.

Let B → EndC(T ) and R(B) → B be the canonical inclusion and
projection, respectively. Then it follows from the definition of π =

π(B) that the composition B → EndC(T )
π(B)−−−→ R(B) → B is the

identity map and consequently both algebras C and R(B) are split
extensions of B. �

A different proof of the last assertion of this theorem, relating the
quivers of EndC(T ) and R(B), is given in [1, 4.17].

An interesting consequence of this theorem is the following result.

Corollary 4.14. [11, 3.21] If B is an iterated tilted algebra of Dynkin
type and gldimB ≤ 2 then R(B) is of finite representation type.

Proof. Let H be a hereditary algebra and T a tilting complex in
Db(H) such that B = EndDb(H)(T ), and let C be the cluster tilted

algebra C = EndC(H)(T ). Since H is hereditary we know by [19, Cor.
2.4] that C is of finite representation type, thus so is the quotient
R(B) of C. �

5. The Dynkin case

The notion of admissible cut played an important role in the study
of trivial extensions of finite dimensional algebras. As seen in 3.5, for
a schurian triangular algebra Λ, an algebra Λ′ is an admissible cut of
T (Λ) if and only if T (Λ) ≃ T (Λ′). Our next purpose is to show how
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admissible cuts can be used to study cluster tilted algebras of Dynkin
type.

To do this we need the description of the relations of cluster tilted
algebras of Dynkin type given by Buan, Marsch and Reiten in [17]. We
will say that an arrow α is parallel, (resp. antiparallel) to a relation (or
a path or an arrow) ρ if s(α) = s(ρ) and t(α) = t(ρ) (resp. s(α) = t(ρ)
and t(α) = s(ρ)). We recall that a relation ρ is called minimal if
ρ =

∑
i βiρiγi where ρi is a relation for every i, then βi and γi are

scalars for some index i (see [17]).

The following description follows immediately from [17, Thm. 4.1].

Theorem 5.1. Let C be a cluster-tilted algebra of Dynkin type. Then
C ≃ kQC/IC , where:

a) For each arrow in QC there exist at most two shortest antiparallel
paths to η. If there is at least one and Ση denotes the full subquiver
of QC given by the vertices of η and the antiparallel paths, then the
quiver Ση is isomorphic to C(n) (for some n) or to G(a, b) (for some
a, b), as shown in the following picture.

C(n) :

r
r r
r r




�

-

�J
J]

�

v1

v2 v3

vn−1vn

η

γ

γ

γ
G(a, b) :

r r r r- --

r r r r- --

r r
@
@R

@
@R�

��

�
��

�v1

v′2 v′3 v′b−1 v′b

v2 v3 va−1 va

va+1 = v′b+1

η

β β

α α

β

α

β

α

(b) The ideal IC is generated by minimal zero relations and minimal
commutativity relations, and each of them is antiparallel to exactly
one arrow. If an arrow η is antiparallel to the minimal zero relation
ρ, then Ση ≃ C(n) and ρ = γn−1. If η is antiparallel to the minimal
commutativity relation ρ1 = ρ2, then Ση ≃ G(a, b) and ρ1 = αa ̸=
0, ρ2 = βb ̸= 0.

Thus, in the Dynkin case cluster algebras are determined by their
quivers. It has been proven in [21] that this result extends to the
non Dynkin case. We find here an analogy with trivial extensions of
schurian triangular algebras, since they are also determined by their
quivers.

From the above description we get that, given a minimal set of min-
imal relations R in C, each arrow in an oriented cycle is antiparallel
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to a unique minimal relation in R, and all minimal relations are ob-
tained in this way. So, if ∆ = {α1. . . . , αt} is an admissible cut of C,
then each αi is antiparallel to a relation ρi, and ρi is a relation in the
quotient algebra C/∆. More precisely:

Proposition 5.2. [11, Prop. 4.16] Let B be a quotient by an ad-
missible cut of a cluster-tilted algebra C of Dynkin type. Write B =
kQB/IB where QB is the quiver of B and IB is an admissible ideal
generated by the minimal set of minimal relations {ρi | i = 1, . . . t}.
Then C is a split extension of B by an ideal M = ⟨α1, α2, . . . , αt⟩, gen-
erated by arrows such that αi is antiparallel to ρi for each i = 1, . . . , t.

Proof. The first part of the proposition follows from the preceding
observation. The fact that C is split extension of B by M can be
proven using Theorem 5.1 and the characterization of split extensions
in terms of their relations given in [3, Thm. 2.5]. �

Using the description of the quiver of the relation extension given in
2.4 we can state the following Corollary:

Corollary 5.3. Let B be a quotient by an admissible cut of a cluster-
tilted algebra C of Dynkin type such gldimB ≤ 2. Then QR(B) = QC .

Example 5.4. One can easily see that the algebras Bi, i = 0, 1, 2,
in Example 4.11 are all admissible cuts of C(B0). By the preceding
corollary we know that all their relation extensions have the same
quiver, which coincides with the quiver of C(B0). This fact follows
also from Theorem 4.13, which implies that R(Bi) is the quotient of
C(Bi) = C(B0) by an ideal contained in rad2C(Bi). We also know
that R(B2) ≃ C(B2).

However, the relation extension of an iterated tilted algebra B of
Dynkin type and global dimension at most two is in general not iso-
morphic to the cluster algebra C(B). For example, the relation ex-
tension R(B0) of 4.11 is not isomorphic to C(B0). In fact, it follows
from the definition of the product in the relation extension, that the
product of arrows corresponding to relations is zero in the relation
extension. So the path 5 → 3 → 1 is zero in R(B0). Since this path
is not contained in any cycle, it is nonzero in C(B0), as follows from
the description of the relations of cluster tilted algebras given in 5.1.
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We have seen in section 4.2 that when B is an iterated tilted algebra
and gldimB ≤ 2, then there exists a sequence of algebra homomor-
phisms

B → C(B)
π−→ R(B) → B

whose composition is the identity map. Moreover, π is an epimor-
phism whose kernel is contained in rad2C(B). In particular C(B)
and R(B) have the same quivers and are both split extensions of B.
It follows from this result that B is an admissible cut of R(B) if and
only if B is an admissible cut of C(B).

In general, it is not necessarily true that an algebra of global dimension
2 is an admissible cut of its relation extension, as the example in [11,
4.14] shows. It is not known wether this holds if we further assume
that the algebra is iterated tilted. However, in the Dynkin case the
situation is particularly nice, as the following result shows.

Theorem 5.5. [11, Theorem 4.20] Let Q be a Dynkin quiver. An
algebra B with gldimB ≤ 2 is iterated tilted of type Q if and only if
it is the quotient of a cluster-tilted algebra of type Q by an admissible
cut.

The proof of this theorem uses several techniques and results. To
prove the sufficiency, a result of Assem and Skowroński in [8] is used,
stating that if the Tits form qA of an algebra A is positive definite and
A is strongly simply connected, then A is iterated tilted of Dynkin
type.

Let B be the quotient by an admissible cut of a cluster tilted algebra
C of Dynkin type Q. The proof of the positiveness of qB is based
on a result on quasi-Cartan companion matrices due to Barot, Geiss
and Zelevinski, which states that the quiver QC admits a positive
definite quasi-Cartan companion (see [12]). On the other hand, a
careful study of the cycles in B, and known results about strong and
simple connectedness are used to prove that B is strongly simply
connected.

To prove the necessity, let B an iterated tilted algebra of Dynkin type
Q. By Theorem 4.13 we kow that C(B) is a split extension of B ,
thus B is the quotient of the cluster tilted algebra C(B) by the ideal J
generated by the arrows of QC(B) which are not in QB. The fact that
J is an admissible cut of C is proven using that C(B) and R(B) have
the same quiver, and the description of the relations for the cluster
tilted algebra given in [17] (see 5.1).
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Therefore, in the Dynkin case admissible cuts of cluster tilted algebras
and iterated tilted algebras of global dimension at most 2 coincide
(up to isomorphism). This result can not be extended to arbitrary
iterated tilted algebras of global dimension at most two, not even in
the euclidean case, as shown in [11, 4.21].

5.1. Applications. These results can be applied in different ways.
For example, in many cases they can be combined with known results
about cluster tilted algebras, to determine that a given algebra of
global dimension two is not iterated tilted, as the example in [11,
4.14] shows.

These ideas can also be applied to classify cluster-tilted algebras of
Dynkin type. In fact, Bordino, Fernández and Trepode classified those
of type Ep using the results in the last two sections, and the fact that
the classification of iterated tilted algebras is known.

Acknowledgement. I wish to thank Elsa Fernández and Sonia Tre-
pode for useful discussions and for their help in the preparation of
this manuscript.
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