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Abstract. This is an expository article. It gives a detailed explanation of the
product formula of Cohomological Hall algebra.

1. Introduction

In [3], Maxim Kontsevich and Yan Soibelman introduced a remarkable algebra
called Cohomological Hall algebra, which has a very complicated product for-
mula. This expository article is devoted to explain this product formula in details.

The paper is divided into three parts. In Section 2, the definition of Cohomo-
logical Hall algebra and the definition of its product is recalled. Since these things
are highly related to equivariant cohomology, in Section 3, a quick access to im-
portant results of equivariant cohomology we need in this paper are given. At last,
using these results, the formula is explained in details in Section 4.

2. The definition of Cohomological Hall algebra

2.1. Quiver moduli stack. Let Q be a quiver, I be the set of its vertices and H
be the set of arrows. For a fixed dimension vector γ = (γi)i∈I , we have the rep-
resentation space Mγ =

⊕
α:i 7→ j Hom(Cγ

i
,Cγ

j
) and the group Gγ =

∏
i∈I GLγi(C)

acting on it. The action is defined by conjugation:

g · f = (g j fi jg−1
i )α:i 7→ j, (2.1)

for g = (gi)i∈I ∈ Gγ and f = ( fi j)α:i 7→ j ∈ Mγ. Since Mγ can be treated as the
space of representations of Q in coordinate spaces of dimensions γ, and Gγ is the
automorphism group of the isomorphism classes of representations, the quotient
stack [Mγ/Gγ] is the stack of representations of Q with dimension vector γ.
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2.2. Correspondence and pullback-pushforward construction. Fix any two
dimension vectors γ1 and γ2 and denote γ = γ1 + γ2. Denote by Mγ1,γ2 the space
of representations of Q in coordinate spaces of dimensions (γi

1 + γi
2)i∈I such that

the standard coordinate subspaces of dimensions (γi
1)i∈I form a subrepresentation.

Obviously Mγ1,γ2 is an affine space, and also a closed subspace of Mγ. The group
Gγ1,γ2 ⊂ Gγ consisting of transformations preserving subspaces Cγ

i
1 ⊂ Cγ

i
for all

i ∈ I, acts on Mγ1,γ2 . The quotient stack [Mγ1,γ2/Gγ1,γ2] is the correspondence we
are looking for.

Now let’s apply the standard pullback-pushforward construction to these ob-
jects. Since [Mγ1,γ2/Gγ1,γ2] contains information about [Mγ1/Gγ1], [Mγ2/Gγ2] and
[Mγ/Gγ], there are three natural projections:

[Mγ1/Gγ1]

[Mγ1,γ2/Gγ1,γ2]

p1
gg

p2ww

p // [Mγ/Gγ]

[Mγ2/Gγ2]

. (2.2)

Note that p is a proper morphism of smooth Artin stacks. Hence it induces the
pushforward map on cohomology. Combining it with the pullback [Mγ1/Gγ1] ×
[Mγ2/Gγ2]← [Mγ1,γ2/Gγ1,γ2], we obtain

mγ1,γ2 : H∗(Mγ1/Gγ1) ⊗ H∗(Mγ2/Gγ2)
p∗1⊗p∗2
−−−−−→ H∗(Mγ1,γ2/Gγ1,γ2)

p∗
−−→ H∗(Mγ/Gγ).

(2.3)

2.3. The cohomology. From [2], the cohomology of quotient stacks can be real-
ized as the equivariant cohomology of the underlying space on which the gauge
group acts. Then the above map (2.3) can be modified to equivariant cohomology:

mγ1,γ2 : H∗Gγ1
(Mγ1) ⊗ H∗Gγ2

(Mγ2)
p∗1⊗p∗2
−−−−−→ H∗Gγ1 ,γ2

(Mγ1,γ2)
p∗
−−→ H∗Gγ

(Mγ). (2.4)

Definition–Proposition 2.1. [3] Let Hγ = H∗Gγ
(Mγ), and HQ = ⊕γHγ. Equipped

it with a multiplication m whose restriction over Hγ1 ⊗ Hγ2 is mγ1,γ2 . m is as-
sociative. HQ is called the Cohomological Hall algebra associated to the quiver
Q.

3. Preliminaries

3.1. Notations. Let G be a compact, connected Lie group of rank n and T a
maximal torus in G. A character of the torus T is a multiplicative Lie group
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homomorphism of T into C∗. Fix a character λ, we can construct a 1-dimensional
representation Cλ of T via t · µ = λ(t)µ for t ∈ T and µ ∈ C. On the Lie algebra
level, characters can also be treated as weights. In the following, characters and
weights are used without differences.

Assume T acts on a space X freely. L(X/T, λ) = X ×T Cλ is a line bundle over
X/T . The first Chern class of this linear bundle makes a connection between the
group T̂ of characters of T and the second cohomology of X/T :

c1 : T̂ → H2(X/T ), λ 7→ c1(L(X/T, λ)). (3.1)

Extend it to S ym(T̂ ) and H∗(X/T ), we get:

cX/T : S ym(T̂ )→ H∗(X/T ). (3.2)

This map is called the characteristic map of X/T .
We take a special case as an example. If X = G, X/T = G/T . Then the gener-

ators xi of H∗(G/T ) is actually the image of the fundamental character λi under the
characteristic map cG/T . By abusing the notations, H∗(G/T ) = Q[x1, . . . , xn]/(RW

+ ),
where W is the Weyl group of T in G and (RW

+ ) is the ideal in Q[x1, . . . , xn] gen-
erated by all homogeneous W-invariant elements of positive degree.

3.2. Equivariant cohomology. Let G be a compact connected Lie group acting
on a space X. Set XG := EG ×G X. The equivariant cohomology H∗G(X) is defined
to be H∗(XG). Note that EG ×G X → BG is a fibre bundle over the classifying
space BG with the fibre X. If a torus T acts on a point, ET ×T pt = BT . Then
H∗T (pt) = Q[u1, . . . , un], where {ui}

n
i=1 are the first Chern classes of the line bundles

L(BT, λi) described in the previous section.
Here does we describe another example, H∗T (G/T ), which is essential in this

paper. Since (G/T )T is a bundle over BT with G/T as its fibre, we have an em-
bedding i : G/T ↪→ (G/T )T . Lλ := L(G/T, λ) = G ×T Cλ is a bundle over
G/T . There is a natural left T -action on Lλ. Thus (Lλ)T is well-defined. It is
easy to see that (Lλ)T is a line bundle over (G/T )T and i∗(Lλ)T = Lλi . Then
i∗c1(Lλi)T = c1(Lλi) = xi. In general, for an embedding i : X → XG, we say
that an equivariant cohomology class η̃ ∈ H∗G(X) is an equivariant extension of
η ∈ H∗(X) if i∗η̃ = η. Thus i∗c1(Lλi)T is an equivariant extension of xi. We denote
it by x̃i.

Proposition 3.1. [4]. H∗T (G/T ) ' Q[u1, . . . , un, x̃1, . . . , x̃n]/J , where J is the
ideal generated by b(x̃) − b(u) for all homogeneous polynomials b of positive
degree invariant under the Weyl group action.

The following proposition is also very important.

Proposition 3.2. [4]. H∗(X/G) is the subspace of W-invariants of H∗(X/T ).
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Remark 3.3. Combining the above two propositions, H∗G(G/T ) is the W-invariants
of H∗T (G/T ). Thus H∗G(G/T ) ' Q[x̃1, . . . , x̃n]. Furthermore, H∗G(G/T ) ' H∗T (pt)
naturally. The isomorphism is given by x̃i ↔ ui.

Similarly, for any closed Lie subgroup H of G containing T , we have

Proposition 3.4. (1) H∗(X/H) is the subspace of WH-invariants of H∗(X/T ),
where WH is the Weyl group of T in H.

(2) H∗T (G/H) ' Q[u1, . . . , un] ⊗Q (Q[x̃1, . . . , x̃n])WH/J , where J is the ideal
generated by b(x̃) − b(u) for all homogeneous polynomials b of positive
degree invariant under the Weyl group action.

(3) H∗G(G/H) ' H∗H(pt). The isomorphism is given by x̃i ↔ ui.

3.3. Equivariant Euler class. For a G-equivariant vector bundle E → X, EG →

XG is also a vector bundle. The equivariant Chern class cG(E) of E → X is
defined to be the ordinary Chern class of EG → XG.

Let V be a representation of T with a weight decomposition V = ⊕Cλ. V →
pt can be treated as an equivariant vector bundle over a point. Its equivariant
homotopy is VT → BT , which is a vector bundle over BT . From the construction
of VT , it is very easy to see that VT = ⊕L(BT, λ). Thus the Chern class of the
vector bundle VT is

∏
(1 + uλ), and the Euler class of this bundle is

∏
uλ. In

other words, the equivariant Chern class of the equivariant vector bundle V → pt
is

∏
(1 + uλ), and the equivariant Euler class eT is

∏
uλ. In this case to find the

T -equivariant Euler class of V → pt is the same as that to find out the weight
decomposition of V .

4. The product formula

4.1. Setup. We consider the equivariant cohomology of the Mγ with Gγ-action.
We use the standard model

Gr(d,C∞) := lim
→

Gr(d,CN),N → +∞ (4.1)

of the classifying space of GLd(C) for d ≥ 0, and define

BGγ :=
∏
i∈I

BGL(γi,C) =
∏
i∈I

Gr(γi,C∞). (4.2)

Stack [Mγ/Gγ] gives the universal family over BGγ

(Mγ)Gγ := EGγ ×Gγ Mγ, (4.3)

where EGγ → BGγ is the standard universal Gγ-bundle.
Apply the propositions stated in the previous section, we have:
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Proposition 4.1. (1) H∗Gγ
(Mγ) ' H∗Gγ

(pt) is an algebra of polynomials, with
generators {ui,1, . . . , ui,γi}i∈I , symmetric in the set of generators

{ui,1, . . . , ui,γi}

for each i ∈ I.
(2) H∗Gγ1 ,γ2

(Mγ1,γ2) ' H∗Gγ1 ,γ2
(pt) is an algebra of polynomials, with genera-

tors {u′i,1, . . ., u′
i,γi

1
}i∈I and {u′′i,1, . . ., u′′

i,γi
2
}i∈I , symmetric in these two sets

respectively for each i ∈ I.
(3) H∗Gγ

(Gγ/Gγ1,γ2) is an algebra of polynomials, with generators { ˜x′i,1, . . .,
˜x′
i,γi

1
}i∈I and { ˜x′′i,1, . . ., ˜x′′

i,γi
2
}i∈I , symmetric in these two sets respectively for

each i ∈ I. We have an isomorphism

H∗Gγ
(Gγ/Gγ1,γ2) ' H∗Gγ1 ,γ2

(pt),

and the isomorphism is given by ˜xi,α ↔ ui,α.

Remark 4.2. There is a small gap here. The groups we are using in Section 3
along with many computations below are compact connected Lie groups, while
the groups in our initial model are complex general linear groups, which is not
compact. It does not really matter due to the following reason. Let G be a compact
connected Lie group, T be a maximal torus, GC be the complexification of G
and B be the Borel subgroup containing T . By Iwasawa decomposition, GC/B
is G-equivariant diffeomorphic to G/T . Therefore when we want to compute
the cohomology of the quotient space of a complex general linear group, we first
construct one of its compact real forms and make quotients, apply all the theorems
to the cohomology of these quotients, and then change back to the complex case
to get the answer via the above diffeomorphism. Since we always use this trick,
the procedure will not be repeated in the following and groups from either side
are used freely.

4.2. Pullback. Mγ1 and Mγ2 could be treated as collections of γi
s × γ

j
s matrices

where s = 1, 2 and i, j ∈ I, and Mγ1,γ2 can be realized as the space of block upper
triangular matrices such that the upper left blocks are matrices from Mγ1 and the
lower right blocks from Mγ2 . Then Mγ1,γ2 is a subspace of Mγ and Mγ1 could be
treated as a subspace of Mγ1,γ2 . Similarly, Gγ1,γ2 can be treated as the subgroup of
Gγ which could preserve Mγ1 .

Lemma 4.3. Mγ1,γ2 , Mγ1 ×Mγ2 and Mγ are equivariant homotopy equivalent to a
point for any γ1, γ2, and Gγ1,γ2 is equivariant homotopy equivalent to Gγ1 ×Gγ2 .

Following the lemma, we have

HGγ1
(Mγ1) ⊗ HGγ2

(Mγ2) � HGγ1×Gγ2
(Mγ1 × Mγ2) � HGγ1 ,γ2

(Mγ1,γ2). (4.4)
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Thus if at the beginning we have two cohomological classes f ((u′i,α)) ∈ H∗Gγ1
(Mγ1)

and g((u′′i,α)) ∈ H∗Gγ2
(Mγ2), after this pullback and multiplication in H∗Gγ1 ,γ2

(Mγ1,γ2),
we have f ((u′i,α))g((u′′i,α)) ∈ H∗Gγ1 ,γ2

(Mγ1,γ2).

4.3. Pushforward in general. Given a proper f : X → Y , the pushforward
f∗ : H∗(X) → H∗(Y) is defined in the following way. In two special cases the
pushforword can be defined explicitly. If f is an embedding, f∗ is to multiply the
Euler class of the normal bundle of this embedding. If f is a projection, f : X → Y
can be treated as a bundle, and f∗ is defined to be the integration over fibers. Then
if f is an arbitrary proper map, we can decompose it into a composition of an
embedding i and a projection π, that is f = π ◦ i, and thus we have f∗ = π∗ ◦ i∗.

In our case, p∗ : H∗Gγ1 ,γ2
(Mγ1,γ2) → H∗Gγ

(Mγ) is studied. We decompose
the map EGγ1,γ2 ×Gγ1 ,γ2

Mγ1,γ2 → EGγ ×Gγ Mγ into two steps. The first is
EGγ1,γ2×Gγ1 ,γ2

Mγ1,γ2 → EGγ1,γ2×Gγ1 ,γ2
Mγ which is an embedding, and the second

is EGγ1,γ2 ×Gγ1 ,γ2
Mγ → EGγ×Gγ Mγ, which is a projection. Thus the pushforward

can be decomposed into the following two steps:

HGγ1 ,γ2
(Mγ1,γ2)→ HGγ1 ,γ2

(Mγ) (4.5)

and
H∗(EGγ1,γ2 ×Gγ1 ,γ2

Mγ)→ H∗(EGγ ×Gγ Mγ). (4.6)
In addition, since Mγ1,γ2 and Mγ are equaivariant contractible, (4.6) can also be
written

H∗Gγ
(Gγ/Gγ1,γ2) 7→ H∗Gγ

(pt). (4.7)

Thus what we are going to do next is to study the equivariant Euler class of the
normal bundle of the embedding Mγ1,γ2 ↪→ Mγ to compute the first pushforward
(4.5) and the Gγ-equivariant integration over Grassmannian Gγ/Gγ1,γ2 to compute
the second pushforward (4.6).

Remark 4.4. In the computations of the following sections, what we would deal
with is G-equivariant cohomology or H-equivariant cohomology rather than T -
equivariant cohomology. However, most theorems stated above or below only
work for T -equivariant cohomology, especially the localization formula. To solve
this problem, we just treat a G-equivariant cohomological class as a T -equivariant
cohomological class since H∗G(X) is a subset of H∗T (X). Then after using all
the theorems, we obtain a T -equivariant cohomological class which is still W-
invariant. It implies that it is actually a G-equivariant cohomological class. There-
fore in the following parts, when applying theorems, we are always using T -
equivariant cohomology. This allows the theorem to work, but makes no dif-
ferences to the results.

4.4. The first pushforward (4.5).
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4.4.1. The normal bundle of the embedding. Mγ can be realized as a vector space
of a collections of matrices, and Mγ1,γ2 is its subspace which is consisting of
upper triangular matrices. Then the normal bundle of the embedding should be
the product of Mγ1,γ2 and the normal subspace of Mγ1,γ2 with respect to Mγ, which
is the subspace Nγ1,γ2 of left lower corner of matrices. Since the normal bundle is
a product bundle, it implies that to find out the equivariant Euler class of normal
bundle is to find the weight decomposition of Nγ1,γ2 with respect to T ⊂ Gγ1,γ2 .
Since T acts on Mγ and Mγ1,γ2 by conjugation, we have:

Nγ1,γ2 =
⊕
a:i→ j

γ
j
1⊕

α=1

γi
2⊕

β=1

Cλ′′i,β−λ
′
j,α
. (4.8)

Then we know the equivariant Euler class is

eT (Nγ1,γ2) =
∏

a:i→ j

γ
j
1∏

α=1

γi
2∏

β=1

(u′′i,β − u′j,α) (4.9)

4.4.2. Computations. We start from f ((u′i,α))g((u′′i,α)) ∈ H∗Gγ1 ,γ2
(Mγ1,γ2). After the

first pushforward, we get

f ((u′i,α))g((u′′i,α))
∏

a:i→ j

γ
j
1∏

α=1

γi
2∏

β=1

(u′′i,β − u′j,α). (4.10)

4.5. The second pushforward (4.6). We are going to use Localization formula
to compute this pushforward.

4.5.1. Localization formula for T-equivariant cohomology. Let T act on X, with
XF being the set of fixed points. The equivariant cohomology of X can be gotten
from the equivariant cohomology of the set of fixed points XF . This is called the
equivariant localization theorem. See [1] for details. To integrate the cohomol-
ogy η over X, or to consider the pushforward of the projection π : X → pt, a
localization formula is obtained from the theorem:

π∗(η) =
∑

Z

iZ∗
i∗Zη

eT (NZ)
, (4.11)

where Z is a connected component of XF , iZ is the embedding of this component
into X, and NZ is the normal bundle of the embedding.

In the case that all the fixed points are isolated, the normal bundle Np of the
embedding of the fixed point p is the tangent space Tp at p. Hence the equivariant
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localization formula can be expressed as

π∗(η) =
∑
p∈XF

ip∗

i∗pη

eT (Tp)
. (4.12)

Therefore we need to know how to compute the pullback of classes to fixed points
and how to compute the equivariant Euler classes associated to the fixed points.

4.5.2. Pullback of some classes. G/T is a T -space with left multiplication action.
The set of fixed points is labeled by the element in the Weyl group WG. Let
ω ∈ WG. Recall that ui and x̃i be generators of H∗T (G/T ).

Proposition 4.5. [4].The pullback of equivariant cohomology from G/T to its
fixed point ω is described as below:

(1) i∗ω(ui) = ui;
(2) i∗ω x̃i = ω · ui = uω(i).

4.5.3. The equivariant Euler class associated to the fixed points. We consider
the tangent space at the fixed point ω ∈ WG. For the Grassmannian Gγ/Gγ1,γ2 , the
tangent space is isomorphic to

∏
i∈I Hom(Cγ

i
1 ,Cγ

i
/Cγ

i
1), and the weight decompo-

sition of the tangent space at the fixed point indexed by 1 ∈ W is⊕
i∈I

γi
1⊕

α=1

γi
2⊕

β=1

(Cλ′′i,β−λ′i,α).

Thus the equivariant Euler class is∏
i∈I

γi
1∏

α=1

γi
2∏

β=1

(u′′i,β − u′i,α).

For the tangent space at the point indexed by ω ∈ W, we only need to change the
order of weights, and get

eT (Tω) =
∏
i∈I

γi
1∏

α=1

γi
2∏

β=1

(u′′i,ω(β) − u′i,ω(α)). (4.13)

4.5.4. Computations. We start from f ((u′i,α))g((u′′i,α))
∏

a:i→ j
∏γ

j
1
α=1

∏γi
2
β=1(u′′i,β−u′j,α).

First by using Proposition 4.1, we transfer the cohomological class from H∗T (pt)
to H∗G(G/T ) and get

f (( ˜x′i,α))g(( ˜x′′i,α))
∏

a:i→ j

γ
j
1∏

α=1

γi
2∏

β=1

( ˜x′′i,β − ˜x′j,α). (4.14)
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At the fixed point indexed by ω ∈ WGγ1 ,γ2
, the equivariant Euler class of the

embedding of ω is ∏
i∈I

γi
1∏

α=1

γi
2∏

β=1

(u′′i,ω(β) − u′i,ω(α)),

and
i∗ω f (( ˜xi,α)) = f ((ui,ω(α))).

Thus the result of the pushforward is

π∗( f (( ˜x′i,α))g(( ˜x′′i,α))
∏

a:i→ j

γ
j
1∏

α=1

γi
2∏

β=1

( ˜x′′i,β − ˜x′j,α))

=
∑
ω

f ((u′i,ω(α)))g((u′′i,ω(α)))
∏

a:i→ j
∏γ

j
1
α=1

∏γi
2
β=1(u′′i,ω(β) − u′j,ω(α))∏

i∈I
∏γi

1
α=1

∏γi
2
β=1(u′′i,ω(β) − u′i,ω(α))

.

(4.15)

Since the Weyl group in this case is the set of all shuffles, we can reinterpret
the above result as a shuffle product. Also if we let ai j be the number of arrows in
Q from vertex i to j,

∏
a:i→ j(u′′i,β − u′j,α) =

∏
i, j∈I(u′′i,β − u′j,α)ai j . Then we come to

the following formula:

Theorem 4.6. [3] The product f · g of elements f ∈ Hγ1 and g ∈ Hγ2 is given by
the symmetric function h((ui,α)i∈I,α∈{1,...,γi}), where γ = γ1 + γ2, obtained from the
following function in variables (u′i,α)i∈I,α∈{1,...,γi

1}
and (u′′i,α)i∈I,α∈{1,...,γi

2}
,

f ((u′i,α))g((u′′i,α))

∏
i, j∈I

∏γ
j
1
α=1

∏γi
2
β=1(u′′i,β − u′j,α)ai j∏

i∈I
∏γi

1
α=1

∏γi
2
β=1(u′′i,β − u′i,α)

,

by taking the sum over all
∏

i∈I

(
γi

γi
1

)
shuffles for any given i ∈ I of the variables

u′i,α and u′′i,α.

Acknowledgement. I thank to Yan Soibelman who introduced me to this subject
and taught me a lot. I also thank to Zongzhu Lin, Zhaobin Fan, Janu Verma and
Jie Ren for useful conversations and communications.

References
[1] Atiyah, M.F. and Bott, R. The moment map and equivariant cohomology. Topology, 1984.

23(1): 1–28
[2] Behrend, K. Cohomology of stacks. In Intersection theory and moduli, ICTP Lect. Notes,

XIX. Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004. 249–294 (electronic)

São Paulo J.Math.Sci. 7, 1 (2013), 59–68



68 Xinli Xiao

[3] Kontsevich, M. and Soibelman, Y. Cohomological hall algebra, exponential hodge struc-
tures and motivic Donaldson-Thomas invariants. ArXiv e-prints, 2010

[4] Tu, L.W. Computing characteristic numbers using fixed points. In A celebration of the math-
ematical legacy of Raoul Bott, volume 50 of CRM Proc. Lecture Notes. Amer. Math. Soc.,
Providence, RI, 2010. 185–206

São Paulo J.Math.Sci. 7, 1 (2013), 59–68


