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1. Introduction

Dynkin diagrams first appeared in [20] in the connection with classifica-
tion of simple Lie groups. Among Dynkin diagrams a special role is played
by the simply laced Dynkin diagrams An, Dn, E6, E7 and E8. Dynkin dia-
grams are closely related to Coxeter graphs that appeared in geometry (see
[8]). After that Dynkin diagrams appeared in many braches of mathematics
and beyond, em particular em representation theory.

In [22] P. Gabriel introduced a notion of a quiver (directed graph) and
its representations. He proved the famous Gabriel’s theorem on represen-
tations of quivers over algebraically closed field.

Let Q be a finite quiver and Q̄ the undirected graph obtained from Q by
deleting the orientation of all arrows.
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Theorem 1.1. (Gabriel’s Theorem). A connected quiver Q is of finite
type if and only if the graph Q̄ is one of the following simply laced Dynkin
diagrams: An, Dn, E6, E7 or E8.

I.N. Bernstein, I.M. Gelfand and V.A. Ponomarev [5] gave a proof of
Gabriel’s Theorem using roots, Weyl groups and Coxeter functors.

The terms “tame type” and “wild type” were introduced by P. Donovan
and M.R. Freislich [16]. Extended Dynkin diagrams or Euclidean diagrams

are Ãn, D̃n, Ẽ6, Ẽ7 and Ẽ8 (see, for example, [2]). Tame quivers in terms
of extended Dynkin diagrams were classified by L.A. Nazarova [39] and by
P. Donovan–M.R. Freislich [16]. For finite dimensional algebras and some
other algebraic structures the tame-wild dichotomy problem was solved by
Yu.A. Drozd [17]–[19]. The theory of K-species was first considered by
P. Gabriel in [23]. He obtained the characterization of K-species of finite
type in a special case. His result was extended by V. Dlab and C.M. Ringel
(see [14, Theorem B]).

Theorem 1.2. (Theorem B). A K-species is of a finite type if and only
if its diagram is a finite disjoint union of Dynkin diagrams.

The problem of the ubiquity of the symply laced Dynkin diagrams An,
Dn, En was formulated by V.I. Arnold [1] as follows.

A-D-E classification. The Coxeter-Dynkin graphs An, Dn and En
appear in many independent classification theorems. For instance

(a) the classification of the platonic solids (or finite orthogonal groups in
euclidean 3-space),

(b) the classification of the categories of linear spaces and maps (repre-
sentations of quivers,

(c) the classification of the singularities of algebraic hypersurfaces, with
a definite intersection form of the neighboring smooth fibre,

(d) the classification of the critical points of functions having no moduli,

(e) the classification of the Coxeter groups generated by reflections, or,
of Weyl groups with roots of equal length.

The problem is to find the common origin of all A-D-E classification
theorems and to substitute a priori proofs to a posteriori verifications of
the parallelism of the classifications. An introduction to the A-D-E-problem
can be found in [30].

Dynkin diagrams and extended Dynkin diagrams are widely used in the
study of generalized Cartan matrices and Kac–Moody algebras [2]–[4], [6],
[31], [35], [36], [40] and [42].
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Let G be a finite graph without loops and multiple edges (G is a finite
simple graph). J.H. Smith [41] formulated the following result:

Theorem 1.3. Let G be a finite simple graph with the spectral radius (in-
dex) rG. Then rG = 2 if and only if each connected component of G is one

of the extended Dynkin diagram Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8. Moreover, rG < 2 if
and only if each connected component of G is one of Dynkin diagrams An,
Dn, E6, E7, E8.

For the full proofs of this Smith’s theorem see, for example, [27, chap-
ter I and Appendix I], [37] and [21, Theorem 2.12]. Note that Theorem
1.3 was obtained also in [33, Theorem 5.1] and [7]. In 1975 (see [11])
D.M. Cvetkovich and I. Gutman introduced for extended Dynkin diagrams
of type Ã and D̃ the symbols Cn and Wn. Moreover, they used the follow-
ing notations: Pn for An; Zn for Dn+2, T1 for E6, T2 for E7, T3 for E8, T4
for Ẽ6, T5 for Ẽ7 and T6 for Ẽ8.

The following terminology is used in [12, pp. 77-79]: “Smith’s graphs”
means extended Dynkin diagrams and “reduced Smith’s graphs” means
simply laced Dynkin diagrams An, Dn, E6, E7, E8 (see also [9] and [10]).

In this paper we consider spectral properties of graphs based on Perron-
Frobenius theory of non-negative matrices. We will use terminology and
results from [29, Section 6.5] and [25].

2. Symmetric non-negative matrices

Let G be an undirected finite graph without loops and multiple edges,
i.e., G is a finite simple graph.

Let V G = {1, . . . , n} be the vertex set of G and EG be the edge set of G.
Two vertices i and j are called adjacent if they are connected by an edge.

The adjacency matrix [G] of a simple graph with n vertices is a square
matrix [G] = (αj) of order n, whose (i, j)-entry αij is 1, if the vertices
i and j are adjacent, otherwise αij = 0. Therefore, [G] is a symmetric
(0, 1)-matrix with zero main diagonal.

Denote by Mn(R) the ring of all n×n matrices with real entries. Let A =
(aij) ∈ Mn(R) be a non-negative symmetric permutationally irreducible
matrix.

From the Perron-Frobenius Theorem it follows that A has the largest
positive eigenvalue rA such that any eigenvalue λ of A one has that |λ| ≤ rA,
and there exists a positive eigenvector ~z = (z1, . . . , zn)T with A~z = rA~z.
We give the next.
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Theorem 2.1. Let A = (aij) ∈ Mn(R) be a nonnegative symmetric per-
mutationally irreducible matrix and B be its proper main submatrix. Then
rB < rA.

Before the proof of the theorem we give necessary information about the
properties of A.

Lemma 2.1. [26] Eigenvectors of a matrix belonging to different eigenval-
ues are orthogonal.

Corollary 2.1. Let A ∈Mn(R) be a permutationally irreducible symmetric
matrix and ~z = (z1, . . . , zn)T be its positive eigenvector, then A~z = rA~z.

Proof. Suppose that A~z = λ~z and λ 6= rA. Let ~w = (w1, . . . , wn)T be a
positive eigenvector of A with eigenvalue rA. Then by Lemma 2.1 the inner
product (~z, ~w) is zero. We obtain a contradiction:

n∑
i=1

ziwi > 0.

�

Now we give a proof of Theorem 2.1.

Proof. Let B be a proper principal m×m-submatrix of A. We enumerate
the rows and columns of A such that:

A =


B1 . . . 0 X1
...

. . .
...

...
0 . . . Bt Xt

XT
1 . . . XT

t C

 ,

where B =

B1 . . . 0
...

. . .
...

0 . . . Bt

 and the matrices B1, . . . , Bt are permutation-

ally irreducible.

We may assume that rB = rB1 , B1 ∈ Mm1(R), . . . , Bt ∈ Mmt(R),

m1 + . . . + mt = m. Then, C ∈ Mn−m(R) and X =

X1
...
Xt

, where

Xi ∈Mmi×(n−m)(R).

The matrix A is permutationally irreducible, so X1 6= 0.
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Let ~z = (z1, . . . , zn)T be the Perron-Frobenius positive eigenvector of A,
i.e., A~z = rA~z. Denote by ~zs = (z1, . . . , zm1) th evector formed by the first
m1 coordinates of ~z and by ~ze = (zn−m+1, . . . , zn).

Then we obtain: B1~zs+X1~ze = rA~zs. Obviously the non-negative vector
X1~ze is nonzero (vector ~ze is positive and X1 6= 0 and non-negative). We
have yi ≥ 0 for i = 1, . . . ,m1. Therefore yi ≤ rAzi for i = 1, . . . ,m1 and

there exists 1 ≤ k ≤ m1 such that yk < rAzk. Let ~f = (f1, . . . , fm1)T

be a Perron-Frobenius vector of B1, so B1
~f = rB ~f . Then (~zs, B1

~f) =

(~zs, rB1
~f) = rB1(~zs, ~f) = (B1~zs, ~f) < (rA~zs, ~f) = rA(~zs, ~f), i.e., rB1(~zs, ~f) <

rA(~zs, ~f). Then ~zs, ~f) > 0 as inner product of positive vectors. Therefore
rB = rB1 < rA. Theorem is proved. �

3. Spectra of Dynkin diagrams and extended Dynkin dia-
grams

In this section we give a list of characteristic polynomials and spectra of
Dynkin diagrams and of extended Dynkin diagrams.

Theorem 3.1. (L. Kronecker, [32]) Suppose that all the real roots of a
monic polynomial with integer coefficients belong to the interval [−2, 2] and
are given in the form

2 cosα, 2 cosβ, 2 cos γ, . . . .

Then the angles α, β, γ, . . . are rational multiples of π/2.

The following simple graphs are simply laced Dynkin diagrams:

An, n ≥ 1 : • • • . . . • • •

Dn, n ≥ 4 :

•

• • • . . . • • •

~~~~~

@@
@@

@

•

E6 :
•

• • • • •
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E7 :
•

• • • • • •

E8 :
•

• • • • • • •

The following simple graphs are extended versions of simply laced Dynkin
diagrams:

Ãn (n ≥ 2) :

•

•

qqqqqqqqqqq •

• •

qqq
qqq

qqq
qq

•

MMMMMMMMMMM

D̃n (n ≥ 4):

• •

•

KKKKKKKK

sss
sss

ss
• • •

ssssssss

KKK
KKK

KK

• •

Ẽ6 :

•

•

• • • • •

Ẽ7 :
•

• • • • • • •
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Ẽ8 :
•

• • • • • • • •

Often extended Dynkin diagrams are called Euclidean diagrams.

Proposition 3.1. For the Dynkin diagram An (n ≥ 1) we have

χAn(x) =
∏

1≤k≤n

(
x− 2 cos

kπ

n+ 1

)
Consequently,

S(An) =

{
2 cos

kπ

n+ 1
| k = 1, . . . , n

}
and rAn = 2 cos π

n+1 , where S(An) denotes the spectrum of An.

Proposition 3.2. For the Dynkin diagram Dn (n ≥ 4) we have

χDn(x) = x

 ∏
0≤k≤n−2

(x− 2 cos
(1 + 2k)π

2(k − 1)

 .

Consequently, S(Dn) consists of zero and of the following set:{
2 cos

(1 + 2k)π

2(n− 1)
| k = 0, . . . , n− 2

}
and rDn = 2 cos π

2(n−1) .

Proposition 3.3. For the Dynkin diagram E6 we have

χE6(x) = x6 − 5x4 + 5x2 − 1 =
∏

1≤k≤6

(
x− 2 cos

mkπ

12

)
,

where mk = 1, 4, 5, 7, 8, 11. Then

S(E6) =
{

2 cos
mkπ

12
|mk = 1, 4, 5, 7, 8, 11

}
and rE6 = 2 cos π

12 .

Proposition 3.4. For the Dynkin diagram E7 we have

χE7(x) = x(x6 − 6x4 + 9x2 − 3) =
∏

1≤k≤7

(
x− 2 cos

mkπ

18

)
,

São Paulo J.Math.Sci. 7, 1 (2013), 83–104
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where mk = 1, 5, 7, 9, 11, 13, 17. Then

S(E7) =
{

2 cos
mkπ

18
|mk = 1, 5, 7, 9, 11, 13, 17

}
and rE7 = 2 cos π

18 .

Proposition 3.5. For the Dynkin diagram E8 we have

χE8(x) = x8 − 7x6 + 14x4 − 8x2 + 1 =
∏

1≤k≤8

(
x− 2 cos

mkπ

30

)
,

where mk = 1, 7, 11, 13, 17, 19, 23, 29. Then

S(E8) =
{

2 cos
mkπ

30
|mk = 1, 7, 11, 13, 17, 19, 23, 29

}
and rE8 = 2 cos π

30 .

Proposition 3.6. For the extended Dynkin diagram Ãn (n ≥ 2) we have

χÃn
(x) = µn+1 + µ−n−1 − 2 =

∏
1≤k≤n

(
x− 2 cos

2kπ

n+ 1

)
,

where x = µ+ 1
µ . Then consequently,

S(Ãn) =

{
2 cos

2kπ

n+ 1
| k = 0, . . . , n

}
and rÃn

= 2.

Proposition 3.7. For the extended Dynkin diagram D̃n (n ≥ 4) we have

χD̃n
(x) = χÃ3

(x)χn−3(x) = x2(x2 − 4)
∏

0≤k≤n−3

(
x− 2 cos

kπ

n− 2

)
.

Then

S(D̃n) =

{
2 cos

kπ

n− 2
| k = 1, . . . , n− 3

}
∪ [−2, 0, 0, 2]

and rD̃n
= 2.
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Proposition 3.8. For the extended Dynkin diagrams Ẽ6, Ẽ7, Ẽ8 we have

χẼ6
(x) = x(x2 − 1)2(x2 − 4);

χẼ7
(x) = x(x2 − 1)(x2 − 4)

∏
1≤k≤3

(x− 2 cos kπ4 );

χẼ8
(x) = x(x2 − 1)(x2 − 4)

∏
1≤k≤4

(x− 2 cos kπ5 ).

Then

S(Ẽ6) = [0,±1,±1,±2] and rẼ6
= 2.

S(Ẽ7) =
{

2 cos kπ4 | k = 1, 2, 3
}
∪ {0,±1,±2} and rẼ7

= 2.

S(Ẽ8) =
{

2 cos kπ5 | k = 1, 2, 3, 4
}
∪ {0,±1,±2} and rẼ8

= 2.

4. Perron-Frobenius vectors of extended Dynkin diagrams

We consider simply laced extended Dynkin diagrams and its Perron-
Frobenius vectors.

We give the list of these graphs with the numbering of vertices suitable
for us:

Ẽ6 :

• 6

• 3

• • • • •
5 2 1 4 7

Ẽ7 :

• 3

• • • • • • •
7 5 2 1 4 6 8

Ẽ8 :

• 3

• • • • • • • •
5 2 1 4 6 7 8 9
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Ãn (n ≥ 2) :

3

•

2 •

ooooooooooooo • n− 1

1 • •

ooo
ooo

ooo
ooo

o n

•

OOOOOOOOOOOOO

n+ 1

D̃n (n ≥ 4):

n− 1 n+ 1

• •

•

OOOOOOOOOO

ttt
ttt

ttt
tt

• • •

mmmmmmmmmmmm

MMM
MMM

MMM
MMM

M

1 2 n− 4 n− 3

• •
n− 2 n

Case Ẽ6.

The adjacency matrix is

[Ẽ6] =



0 1 1 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0


Let ~z = (z1, z2, z3, z4, z5, z6, z7)

T be a positive eigenvector of Ẽ6.
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0 1 1 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0





z1
z2
z3
z4
z5
z6
z7

 =



λz1
λz2
λz3
λz4
λz5
λz6
λz7




z2 + z3 + z4 = λz1
z1 + z5 = λz2
z1 + z6 = λz3
z1 + z7 = λz4

z2 = λz5
z3 = λz6
z4 = λz7

z2 + z3 + z4 = λ(z5 + z6 + z7) = λz1;

z1 = z5 + z6 + z7, 4z1 = λ2z1, i.e., λ = 2.

z2 = 2z5, z3 = 2z6 and z2 = z3 = z4 = 2, 2z1 = 6, z1 = 3.

We obtain ~z = (3, 2, 2, 2, 1, 1, 1)T .

Case Ẽ7.

The adjacency matrix is

[Ẽ7] =



0 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


.

As above

0 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0





z1
z2
z3
z4
z5
z6
z7
z8


= λ



z1
z2
z3
z4
z5
z6
z7
z8
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z1 + z3 + z4 = λz1
z1 + z5 = λz2

z1 = λz3
z1 + z6 = λz4
z2 + z7 = λz5
z4 + z8 = λz6

z5 = λz7
z6 = λz8

We have z6 = λz8, z4 = (λ2 − 1)z8, z1 = (λ3 − 2λ)z8,

z3 = (λ2 − 2)z8, z2 = (λ4 − 4λ2 + 3)z8,

z5 = (λ5 − 5λ3 + 5λ)z8, z7 = (λ4 − 5λ2 + 5)z8.

Let z8 = 1. Then from z2 + z7 = λz5 it follows that

λ4 − 4λ2 + 3 + λ4 − 5λ2 + 5 = λ6 − 5λ4 + 5λ2, i.e.,

λ6 − 7λ4 + 14λ2 − 8 = 0.

Obviously, 26− 7 · 24 + 14 · 22− 23 = 22(16− 28 + 14− 2) = 0, i.e., λ = 2
is a root. Therefore ~z = (4, 3, 2, 3, 2, 2, 1, 1)T .

Case Ẽ8.

The adjacency matrix is

[Ẽ8] =



0 1 1 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0


.

As above

0 1 1 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0





z1
z2
z3
z4
z5
z6
z7
z8
z9


= λ



z1
z2
z3
z4
z5
z6
z7
z8
z9


São Paulo J.Math.Sci. 7, 1 (2013), 83–104



Dynkin diagrams and spectra of graphs 95



z2 + z3 + z4 = λz1
z1 + z5 = λz2

z1 = λz3
z1 + z6 = λz4

z2 = λz5
z4 + z7 = λz6
z6 + z8 = λz7
z7 + z9 = λz8

z8 = λz9

We have z8 = λz9, z7 = (λ2 − 1)z9, z6 = (λ3 − 2λ)z9,

z4 = (λ4 −−3λ2 + 1)z9, z1 = (λ5 − 4λ3 + 3λ)z9,

z3 = (λ4 − 4λ2 + 3)z9, z2 = (λ6 − 6λ4 + 10λ2 − 4)z9,

z5 = 9λ7 − 7λ5 = 14λ3 − 7λ)z9.

Let z9 = 1. From z2 = λz5 we obtain

λ6−6λ4+10λ2−4 = λ8−7λ6+14λ4−7λ2, i.e., λ8−8λ6+20λ4−17λ2+4 =
0. Obviously, 28 + 8 · 26 + 20 · 24 − 17 · 22 + 4 = 4(26 − 27 + 20 · 4− 16) =
4(64−128 + 80−16) = 0, i.e., 2 is a root. Then ~z = (6, 4, 3, 5, 2, 4, 3, 2, 1)T .

Case Ãn, (n ≥ 2).

Ã2 :

2
•

•

~~~~~
•

@@@@@

1 3

The adjacency matrix

[Ã2] =

[
0 1 1
1 0 1
1 1 0

]
and

[Ã2]

(
1
1
1

)
= 2

(
1
1
1

)
. Therefore, rÃ2

= 2.

For Ã3 :
2 • • 3

1 • • 4

São Paulo J.Math.Sci. 7, 1 (2013), 83–104
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the adjacency matrix is [Ã3] =

 0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and [Ã3]

1
1
1
1

 = 2

1
1
1
1

.

Therefore, rÃ3
= 2.

In general case, obviously, [Ãn]~z = 2~z, ~z = (1, . . . , 1)T and rÃn
= 2.

Case D̃4 :

3
•

2 • • • 4

1

•
5

Clearly, the adjacency matrix of D̃4 is:

[D̃4] =


0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

 and


0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0



z1
z2
z3
z4
z5

 = λ


z1
z2
z3
z4
z5

 .

Therefore,

z2 + z3 + z4 + z5 = λz1;

z1 = λz2;

z1 = λz3;

z1 = λz4;

z1 = λz5.

If λ ≤ 0, then ~z is a non-positive eigenvector. So, λ > 0 and z2 = z3 =
z4 = z5. Let z5 = 1. We obtain z1 = λ and λ2 = 4. Thus, λ = 2 and
~z = (2, 1, 1, 1, 1). We have rD̃4

= 2.

For D̃5 :
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4 6
• •

•

KKKKKKKK

xx
xx
xx
xx
x •

ssssssss

FF
FF

FF
FF

F
1 2

• •
3 5

and [D̃5]~z = λ~z, where ~z = (z1, z2, z3, z4, z5, z6)
T . We have z5 = z6 and

z3 = z4. z1 = λz3, z2 = (λ2 − 2)z3, z5 = λ3−3λ
2 z3.

Let z3 = 1. Then ~z = (λ, λ2 − 2, 1, 1, λ
3−3λ
2 , λ

3−3λ
2 )T . From z2 = λz5 we

obtain: λ2 − 2 = λ4−3λ2

2 and λ4 − 5λ2 + 4 = 0. 24 − 5 · 4 + 4 = 0. So, 2 is a
root and

~z = (2, 2, 1, 1, 1, 1)T . Therefore, rD̃5
= 2.

Consider D̃8 :

7 9
• •

•

KKKKKKKK

xx
xx
xx
xx
x • • • •

ssssssss

FF
FF

FF
FF

F
1 2 3 4 5

• •
6 8

We have

0 1 0 0 0 1 1 0 0
1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 1 1
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0





2
2
2
2
2
1
1
1
1


= 2



2
2
2
2
2
1
1
1
1


.

Therefore, rD̃8
= 2.

Consider the general case D̃n:
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n− 1 n+ 1

• •

•

OOOOOOOOOO

ttt
ttt

ttt
tt

• • •

mmmmmmmmmmmm

MMM
MMM

MMM
MMM

M

1 2 n− 4 n− 3

• •
n− 2 n

1 0 1 0 0 . . . 0 1 1 0 0
2 1 0 1 0 . . . 0 0 0 0 0
3 0 1 0 1 . . . 0 0 0 0 0
4 0 0 1 0 . . . 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

n-3 0 0 0 0 . . . 0 0 0 1 1
n-2 1 0 0 0 . . . 0 0 0 0 0
n-1 1 0 0 0 . . . 0 0 0 0 0
n 0 0 0 0 . . . 1 0 0 0 0

n+1 0 0 0 0 . . . 1 0 0 0 0
1 2 3 4 . . . n-3 n-2 n-1 n n+1



2
2
2
2
...
2
1
1
1
1


= 2



2
2
2
2
...
2
1
1
1
1


Thus, rD̃n

= 2.

Corollary 4.1.

(a) For each extended Dynkin diagram G ∈ {Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8} rG = 2.

(b) For each Dynkin diagram G ∈ {An, Dn, E6, E7, E8} we have rG < 2.

Proof. (a) For any extended Dynkin diagram G we already gave a positive
eigenvector with eigenvalue 2. Therefore, rG = 2.

(b) We have the following inclusions: An ⊂ Ãn, Dn ⊂ D̃n, E6 ⊂ Ẽ6, E7 ⊂
Ẽ7, E8 ⊂ Ẽ8. By Theorem 2.1 rG < 2 for any G ∈ {An, Dn, E6, E7, E8}.

�

Proof of Smith’s theorem. Corollary 4.1 gives the “if” part of Smith’s the-
orem.

Conversely, let G be a connected finite simple graph with rG ≤ 2. If G
is not a tree, then G must be the extended Dynkin diagram Ãn. So, G is a
tree. It is easy to see G must be a tree of the form Tp,q,r (see [31, Exercise
4.3]). Using Theorem 2.1 we obtain that Tp,q,r is either one of simply laced
Dynkin diagrams or one of simply laced extended Dynkin diagrams.
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5. Some examples

Let E6 be given in the form:

E6 :

• 3

• • • • •
5 2 1 4 6

Then
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 0 0 0
1 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0



z1
z2
z3
z4
z5
z6

 = λ


z1
z2
z3
z4
z5
z6


z2 + z3 + z4 = λz1

z1 + z5 = λz2
z1 = λz3

z1 + z6 = λz4
z2 = λz5
z4 = λz6

Let z6 = 1. Then z4 = λ, z)1 = λ2 − 1 and z3 = λ2−1
λ . Obviously,

z2 = λ4−3λ2+1
λ . Therefore, z5 = λ4−3λ2+1

λ2
. On the other hand, z5 =

λz2−z1 = λ4−4λ2 +2. Consequently, λ
4−3λ2+1
λ2

= λ4−4λ2 +2. We obtain

that λ6 − 5λ4 + 5λ2 − 1 = 0.

Let E7 be given as follows:

E7 :

• 3

• • • • • •
5 2 1 4 6 7

Then

0 1 1 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 0 1 0 0 1
0 0 0 0 0 1 0





z1
z2
z3
z4
z5
z6
z7

 = λ



z1
z2
z3
z4
z5
z6
z7
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z2 + z3 + z4 = λz1
z1 + z5 = λz2

z1 = λz3
z1 + z6 = λz4

z2 = λz5
z4 + z7 = λz6

z6 = λz7

Let z7 = 1 and z6 = λ. Then z4 = λz6 − z7. We obtain z4 = λ2 − 1.
Therefore, z1 = λ3 − 2λ. Obviously, z3 = λ2 − 2. We have z2 = λz1 −
z3 − z4 and z2 = λ4 − 4λ2 + 3. From the equality z2 = λz5 it follows that

z5 = λ4−4λ2+3
λ . On the other hand, z5 = λz2 − z1 = λ5 − 5λ3 + 5λ. So,

λ4−4λ2+3
λ = λ5 − 5λ3 + 5λ and λ6 − 6λ4 + 9λ2 − 3 = 0.

Let E8 be given in the following form:

E8 :

• 3

• • • • • • •
5 2 1 4 6 7 8

Then

0 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0





z1
z2
z3
z4
z5
z6
z7
z8


= λ



z1
z2
z3
z4
z5
z6
z7
z8


We obtain the following system of linear equations

z2 + z3 + z4 = λz1
z1 + z5 = λz2

z1 = λz3
z1 + z6 = λz4

z2 = λz5
z4 + z7 = λz6
z6 + z8 = λz7

z7 = λz8

Let z8 = 1. Then z7 = λ and z6 = λ2 − 1. Obviously, we have: z4 =

λ3 − 2λ, z1 = λ4 − 3λ2 + 1, z3 = λ4−3λ2+1
λ , z2 = λ6−5λ4+6λ2−1

λ and z5 =
λ6−5λ4+6λ2−1

λ .
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Hence, z5 = λz2 − z1 = λ6 − 6λ4 + 9λ2 − 2. Consequently, λ6 − 6λ4 +

9λ2 − 2 = λ6−5λ4+6λ2−1
λ2

and λ8 − 7λ6 + 14λ4 − 8λ2 + 1 = 0

In conclusion we consider the following simple graph G5:

4

3 • 5
• •

•

JJJJJJJJ

tt
tt
tt
tt

qqqqqqqqq

MMM
MMM

MMM
1

• •
2 6

with the adjacency matrix [G5]:
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0


We have

[G5]~z = λ~z, (1)

where ~z = (z1, z2, z3, z4, z5, z6)
T . From 1 we obtain

z2 + z3 + z4 + z5 + z6 = λz1
z1 = λz2
z1 = λz3
z1 = λz4
z1 = λz5
z1 = λz6

.

Consequently, 5z1 = λ(z2 + z3 + z4 + z5 + z6) = λ2z1. Since, z1 6= 0, we
obtain λ =

√
5 and ~z = (

√
5, 1, 1, 1, 1, 1) and rG5 =

√
5 > 2.

Acknowledgements

The first and the third authors were partially supported by Fapesp
and CNPq (Brazil). The second and the last authors were supported by

São Paulo J.Math.Sci. 7, 1 (2013), 83–104



102M. A. Dokuchaev, N. M. Gubareni, V. M. Futorny, M.A. Khibina, and V. V. Kirichenko

FAPESP (Brazil), and they thank the Department of Mathematics of the
University of São Paulo for its warm hospitality during their visit in 2010.

References

[1] V. Arnold, The A-D-E-classifications. Mathematical developments arising from
Hilbert problems (ed. F.E. Browder). Proceedings Symposia Pure Math. 28,
Providence (1976), 46.

[2] M. Auslander, I. Reiten, S.O. Smalø , Representation theory of Artin algebras.
Cambridge Studies in Advanced Mathematics, 36. Cambridge University Press,
Cambridge, 1995.

[3] M. Auslander, I. Reiten, McKay quivers and extended Dynkin diagrams. Trans.
Amer. Math. Soc. 293:1 (1986), 293–301.

[4] S. Berman, R. Moody, M. Wonenburger, Cartan matrices with null roots and
finite Cartan matrices. Indian Math. J. 21 (1972), 1091–1099.

[5] I.N. Bernstein, I.M. Gelfand and V.A. Ponomarev, Coxeter functors and Gabriel’s
theorem. Usp. Mat. Nauk. 28 (1973), 19–33, Transl. Russ. Math. Surv. 28 (1973),
17–32.

[6] N. Bourbaki, Elements de mathematique, Groupes et algebras de Lie, Chap. 4–6,
Hermann, Paris, 1968.

[7] P.J. Cameron, J.-M. Goethals, J.J. Seidel, E.E. Shult, Line graphs, root systems,
and elliptic geometry. J. Algebra 43:1 (1976), 305–327.

[8] H.S.M. Coxeter, Regular polytopes. Third edition. Dover Publications, Inc., New
York, 1973.
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