
Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 1

TEACHING CAD PROGRAMMING TO ARCHITECTURE
STUDENTS
ENSINO DE PROGRAMAÇÃO CAD PARA ESTUDANTES DE ARQUITEURA

Gabriela CELANI
Architect, Ph.D. professor of the State

University of Campinas, São Paulo, Brazil
celani@fec.unicamp.br

ABSTRACT

The objective of this paper is to discuss the relevance of including the discipline of computer
programming in the architectural curriculum. It starts by explaining how computer
programming has been applied in other educational contexts with pedagogical success,
describing Seymour Papert's principles. After that, the historical development of CAD is
summarized and three historical examples of educational applications of computer
programming in architecture are presented, followed by a contemporary case of particular
relevance. Next, a methodology for teaching programming for architects that aims at
improving the quality of designs by making their concepts more explicit is proposed. This
methodology is based on the author´s experience teaching computer programming for
architecture students at undergraduate and graduate levels at the State University of
Campinas, Brazil. The paper ends with a discussion about the role of programming
nowadays, when most CAD software are user-friendly. As a conclusion, it is suggested that
the introduction of programming in the CAD curriculum within a proper conceptual
framework may transform the concept of architectural education.

Key-words: Computer programming; computer-aided design; architectural education.

RESUMO

O objetivo deste trabalho é discutir a relevância da inclusão de uma disciplina de
programação de computadores no currículo de Graduação em Arquitetura e urbanismo. Ele
começa explicando como a programação tem sido aplicada em outros contextos educacionais
com grande sucesso pedagógico, e descrevendo os princípios de Papert. Em seguida, é
apresentado um resumo da evolução do CAD e três exemplos históricos de aplicações da
programação no ensino de arquitetura são apresentados, seguidos por um exemplo
contemporâneo de grande relevância. Finalmente, é proposta uma metodologia para o
ensino de programação para arquitetos, com o objetivo de melhorar a qualidade dos
projetos, tornando os conceitos arquitetônicos mais explícitos. Essa metodologia é baseada
na experiência da autora de ensino de programação para alunos do curso de graduação em
arquitetura na Universidade Estadual de Campinas. O trabalho termina com uma discussão
sobre o papel da programação nos dias de hoje, quando a maioria dos programas de CAD
são amigáveis. Como conclusão, sugere-se que a introdução da programação no currículo de
CAD, dentro de um arcabouço teórico apropriado, pode vir a transformar o conceito de
ensino da arquitetura.

Palavras-chave: Computer programming; computer-aided design; architectural education.

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 2

1. INTRODUCTION

The objective of this paper is to discuss the relevance of including the discipline of

computer programming in architectural education. Some people may argue that

programming is not necessary and was only defensible when CAD programs

needed it to improve performance.

During ECAADE 18 and 19, held respectively at Weimar in 2000 and Helsinki in

2001, there was a series of discussions about digital design curriculum in

architecture schools. Although most of the attendees’ concerns were restricted to the

representational and analytical roles of CAD, many educators defended the

introduction of algorithmic design in the architectural curriculum.

The course sequence proposed by Mark, Martens and Oxman (2001), for example,

included a topic called "Computables of Design", which explored "the quantitative

basis and invisible geometrical order of shapes found in nature and architecture as

explored through writing computer programs." Seebohm's (2001) position went even

further, suggesting tool building courses, which, he acknowledged, were "perhaps

the most difficult technically, because they [involved] computer programming."

However, according to him, these courses could be "potentially very rewarding

because they [exploited] one of the greatest underused strengths of using computers

in design". Latin America representatives (Montagu et. al., 2001), on the other hand,

were less ambitious, proposing the introduction of programming with the sole

purpose of providing "skills to post projects on websites and understand and

configure CAD software."

In the present paper, I argue that programming can improve logic reasoning and

conceptual thinking in design. My conclusions are drawn on the historical

development of CAD software, on pedagogical experiences with children and

architecture students, and finally on some recent applications of programming in

architectural design.

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 3

2. PROGRAMMING AS PEDAGOGY

In the late 60's and 70's, Papert (1980) developed his first experiments on computer-

based learning at the MIT Media Lab. These included teaching children how to

program a computer in a specially developed language, Logo. According to Papert,

the best way to learn about something was by teaching others and by designing

things. In order to teach a computer, one necessarily needs to have a deep

understanding of what is being taught, all the information needs to be intelligently

organized, problems must be decomposed in simpler sub-problems, and the

program as a whole needs to be planed and designed.

In the 80's Harel and Papert (1991) established the Epistemology and Learning

Research Group, and developed what became known as Constructionism. They

proposed the use of computers as a learning tool and and a "convivial" tool, rather

than a teaching tool. According to them, an active use of computers would allow

more enrichment than a passive use. In order to be active, a computer user needs to

build his or her own software tools. Their pedagogically successful experiments, led

to what became known as Papert´s principle: some of the most crucial steps in

mental growth are based not simply on acquiring new skills, but on acquiring new

administrative ways to use what one already knows (Minski, 1988).

In the 90's, one of Papert's followers, Mitchel Resnick (1994:112), proposed the

development of software as a means to “stimulate the creative processes of the

designer’s mind”. He suggested new methods for using computers in the learning

process, with the use of object-oriented programming to make programs easier to

create, maintain, extend and understand. He also proposed the use of decentralized

systems, parallel computation and parallel programming languages to improve

speed and performance.

Following Papert's example, in architectural education, our role, as educators,

should be to propose the use of computers as a learning tool. The same type of

distinction that Papert and his followers have made between the passive and the

active use of computers could be applied to CAD. In the following session we will

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 4

see how the use of CAD software became progressively more passive along its 50

years of development.

3. SUMMARY OF CAD DEVELOPMENT

Along the past 50 years, computers and CAD software have evolved in parallel, the

former greatly influencing the later and setting up its limits. A brief description of

hardware and software evolution is given below, with the aim of reviewing the

relevance of programming in architectural education and practice along these five

decades of development.

3.1. Hardware
Computer's input and output hardware have greatly influenced the development of

CAD, and consequently the need of knowing programming to operate CAD

systems. The very first CAD applications, for example, used very little graphical

interaction and performed mostly mathematical calculations or data management.

User's interface was not very well developed then, so programming skills were a

requirement for CAD users. The focus then was on the applications of mathematical

methods - such as graph theory, optimization techniques and differential calculus -

in the design process, boosted by the Design Methods Movement.

The very first CAD applications used little graphical interaction and performed

mostly mathematical calculations or data management. In the 70’s, raster displays,

based on inexpensive television technology, “contributed more to the growth of the

field than did any other technology” (Foley, van Dam, Feiner, Hughes & Phillips,

1977:8). The availability of graphic displays with progressively higher speed,

resolution and color range, the introduction of new input devices such as light pens,

mice and digitizing tables, and the development of user-friendly interfaces (Figure

1), contributed to make CAD software increasingly more graphic-oriented. In 84,

Apple introduced the mouse-and-windows style, to which Microsoft responded

with the Windows operational system. The new interaction system has been

responsible for the widespread acceptance of computers since then. With the easier

interactivity and the new focus on visual representation, computer graphics

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 5

substituted the initial original of computer-aided design in architectural education.

Since the 80's, photorealistic computer rendering techniques have been taught CAD

courses in most architecture schools.

Figure 1: Three moments in the hardware evolution: desktop computer with vector
monitor, laptop with raster display, and wirelessly connected tablet/palm top with

interactive displays.

More recently, the telecommunications technologies have influenced the

development of applications by creating the possibility of remote collaboration and

by dynamically feeding CAD systems with on-line information. The first trend has

led to the development of remote collaborative CAD tools that allow users in

different places to share drawings at the same time as they can see and talk to each

other. This technology has produced a new change on the focus of CAD courses, and

nowadays many architecture schools are introducing remote collaboration courses in

the CAD curriculum.

3.2. Software
Mitchell (1990) has characterized five generations of CAD from the early 60’s to the

late 80's, starting with Ivan Sutherland’s SKETCHPAD. Despite Sutherland’s

introduction of the concept of ill-specified, "loose" inputs, following developments

had a different orientation, and CAD programs were turned into an overly precise

tool (Negroponte, 1975).

The 60's and 70's first and second generations of CAD were based on expensive,

turnkey systems, operated by technicians (Richens, 1992). At this time, architects

were still suspicious about the use of computers in design, their attitude positions

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 6

ranging from fear to mystification and resentment that computers would diminish

humanity in architecture (Broadbent, 1973).

In the 80’s, CAD researchers looked for new methodologies and practices, such as

“rule-based and/or frame-based systems that provided the means for codifying the

problem-solving know-how of human-experts" (Schmitt, 1987:213). This decade saw

the parallel development of three different generations of CAD. The third generation

was a natural continuation of the previous two. A fourth generation of simplified

CAD was developed to be used in the new 16-bit IBM and Apple Macintosh

personal computers, finally making CAD affordable to small firms and independent

architects. The fifth generation of CAD was related to the development of a new

kind of computers in the 80’s: the graphic workstations. For these machines, the

developers of both mainframe and PC CAD adapted their products, at the same time

as special applications were being developed. Their 3d-modeling capabilities led to a

discussion about the role of solids modeling in the design process and in replacing

traditional bi-dimensional design representation (Eastman, 1987).

The simplification of CAD systems for personal computers led to a radical change in

the CAD culture, which Mitchell identifies as an inflection point in the history of

architectural CAD, after which “the wider possibilities were largely ignored”

(Mitchell 1990:483). At this point, computer programming was completely

unnecessary for users of commercial CAD packages. The new standardized, general-

use CAD applications for PC’s did not aim to help architects from the early,

conceptual stages of design. Such specialized applications remained restricted to

academic research, while the great majority of offices kept the use of CAD restricted

to drafting and representation.

After Mitchell's fifth generation, it is possible to identify a sixth phase of CAD

development since the early 90's, characterized by an increasing specialization of

products. AutoDesk's website, for example, displays over one hundred different

software products. This generation of CAD also takes advantage of connectivity,

featuring services such as automatic upgrade downloads and on-line help.

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 7

The drastic change in the primary objective of CAD from a problem-solver to a

drafting, representation and communication tool is not only related to technical

questions, but also to philosophical ones. One of the reasons could be the fact that

each architect has a personal way of designing, and it would be extremely hard to

develop a conceptual design system broad enough to fit every architect’s

methodology. Systems that aimed to completely automate the design process never

reached widespread acceptance. That very fact probably explains a lot about the

design process.

However, it has been possible to observe the emergence of a new generation of CAD

in the past few years, called parametric CAD. Although most of these programs -

such as AutoDesk's Revit - market the idea that it is possible develop intelligent,

parameterized designs without writing code, Bentley's experimental software

Generative Components advocates the opposite, and suggests that architectural

concepts should be made explicit through programming.

4. APPLICATIONS OF COMPUTER PROGRAMMING IN ARCHITECTURAL
EDUCATION

I will now present three historical examples of the use of computer programming in

architectural education that I find particularly interesting, analyzing their differences

and similarities. They will be followed by a contemporary example in the next

section. The timeline in Figure 2 shows their positions in the past two decades. The

examples chosen consist of books that have in common the objective of teaching

programming for architects (not necessarily at a beginner's level) through actual

examples of codes that generate architectural form. These books differ from regular

programming books because they discuss generative design methods, not just

programming logic or the syntactic characteristics of a specific programming

language, or even the automation of simple drafting tasks, such as AutoDesk's guide

to AutoCAD's VBA (Roe, 2001).

I do not intend here to discuss the specific content of these books. It does not matter

here if they are teaching genetic programming or shape grammars. I am simply

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 8

interested in their pedagogical goals and the fact that they are introducing computer

programming in a meaningful way to architecture students.

I also do not claim to be presenting a comprehensive survey of this type of

publication, which could be unfair with other authors. Although extremely relevant,

books such as Bentley's Evolutionary Design by Computers (1999) and dissertations

such as Yakeley's Digitally mediated design – using computer programming to

develop a personal design process (2000) do not target architecture students directly.

Books Th
e

Ar
t o

f
C

om
pu

te
r

G
ra

ph
ic

s
P

ro
gr

am
m

in
g

M
ic

ro
-

co
m

pu
te

r
ai

de
d

de
si

gn

 G
en

er
at

iv
e

M
od

el
lin

g

 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 - 06
Workshops

 C
on

te
m

po
ra

ry

ex
am

pl
e:

Sm

ar
t

G
eo

m
et

ry
 G

ro
up

Figure 2: Timeline of the historical and contemporary examples of educational
applications of programming in architecture presented below.

4.1. The Art of Computer Graphics Programming
The objective of The Art of Computer Graphics Programming was to teach Pascal

graphic programming for beginners, through beautifully illustrated architectural

examples. The book presented a series of exercises which are “as concerned with

issues of design theory and visual aesthetics as [they] are with computer

technology” (Mitchell, Ligget, & Kvan, 1987: vii). As programming concepts were

introduced, the authors proposed increasingly complex exercises on vocabularies of

shapes, parameterized shapes, repetition, conditionals, hierarchical structures and

geometric transformations. Table 1 shows some examples of these exercises,

categorized under those concepts. Figure 3 exemplifies the result of one of the

proposed programs, which uses randomly generated numbers in a recursive process

to generate unique trees.

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 9

The purpose of this book can only be understood in a context where commercial

CAD packages were still very limited. Nowadays it would not make sense to

program simple shapes - such as squares and circles - from scratch, but the concepts

introduced by the book are still fundamental to architectural theory.

Concept Exercise

Parameters “Write a parameterized procedure to generate the basic vocabulary element [for the
plan Mies of Van der Rohe’s ‘Brick Country House’]. Use this in a program to replicate
the plan. Then use it in a program to produce variations on this theme” (p.198).

Repetition and
variation

“It has often been argued that the aesthetic success of a composition is a matter of
appropriate balance between ‘unity’ (which may be established by regular repetition)
and ‘variety’ (which may be introduced by changing parameters from instance to
instance). Test this proposition by generating repetitive compositions with different
degrees of variation. Provide a critical analysis of your results” (p.250).

Conditions “Many town plans consist of regular street grids interrupted at various points. Examine
some plans of this type. What are the conditions in which the grid is interrupted? Write
a set of conditional rules that could be used to produce plans of this type, and discuss
their effects” (p.321)

Hierarchy “All of the elements and subsystems of the Doric order have names. Draw a tree
diagram that depicts this hierarchy. Then write a program, structured in the same way,
that generates the order” (p.351)

Recursion “Gothic tracery is often recursive. That is, a large pointed arch is subdivided into
smaller pointed arches, each of which is further subdivided in the same way, and so on.
Write a recursive procedure to generate such tracery designs” (p.353).

Transformation “The plan and elevation compositions of the modern architectural masters Le
Corbusier, Frank Lloyd Wright and Alvar Aalto rarely display rigid axial symmetry in
the classical manner. But on careful inspection, they can usually be found to display
less obvious symmetries and carefully broken symmetries. Take a composition that
interests you, and the exceptions and distortions that are used to break symmetry. Using
the insights that you gain from this analysis, write a concise, expressive program to
generate the composition” (p.476).

Biologic
analogy

“Examine the leaves along a twig from a plant. Can you characterize the pattern that
you see in terms of type and regular repetition? What changes from instance to
instance? What kinds of arithmetic and geometric sequences are involved? Write a
brief, illustrated analysis” (p.250).

Table 1: Some examples of the exercises proposed in “The Art of Computer Graphics
Programming” (Mitchell Ligget, & Kvan, 1987), separated by categories.

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 10

Figure 3: Examples of trees generated by a recursive process with the use of
randomly generated numbers in The Art of Computer Graphics Programming.

4.2. Microcomputer Aided Design for Architects and Designers
In the preface to Microcomputer Aided Design for Architects and Designers, Schmitt

(1988) asserts that his objective was to "remove the unnecessary mystique

surrounding the use of computers for architects and designers" (p.vii). The book was

divided in two parts. The first section presented "microcomputers in the traditional

design approach", i.e., CAD as a drafting tool. The second part of the book, on the

other hand, aimed at revealing "innovative uses of computers and programs as a

possible amplifier of human design intelligence" (Schmitt, 1988: viii). Schmitt

criticizes the use of computers just for productivity objectives, and proposes a more

creative use of the machine: "Although most designers use computers as a

productivity and not as a creativity toll, there is evidence that microcomputers can

increase our creativity significantly (...) through algorithmic and rule-based

programs" (Schmitt, 1988: 85)

Schmitt established a parallel between architectural design and languages,

proposing that both could be characterized by a vocabulary, relations, rules, and a

grammar. He also related the ambiguities in natural languages to those in

architectural languages. Architectural design was thus presented as a ruled-system,

consisting of a set of symbols and a set of rules that relates them. The author

mentioned different types of generative systems, such as fractals, recursive

generation of self-similar elements, shape grammars, parametric shape grammars,

and rule-based design.

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 11

After that, Schmitt compared computer programming to architectural programming.

According to him, both had in common the "analysis of requirements, relations and

concepts and their formalization and generation (...) to address requirements and

specifications" (Schmitt, 1988:114). Although the objective of the book was not to

teach programming for beginners, Schmitt provided many examples of programs in

AutoCad's AutoLisp. His codes implemented the generation of parameterized 3D

architectural forms, such as vaults and domes, and of recursive parametric shape

grammars

(

Figure 4).

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 12

Figure 4: A parametric shape grammar program and resulting design from
Microcomputer Aided Design for Architects and Designers.

At the end of the book, Schmitt exposed the advantages of the computer-assisted

design process: the availability of a great amount of information in databases and

the possibility of using machine inference, helping solve limited aspects of the

design problem based on previous design solutions. According to him, eventually,

the designer's role would be to simply criticize machine-generated alternatives.

Once again, this book must be understood in his particular context. As Schmitt

notes, at that time computers in design were just starting to be operated by the

architects themselves, and his point of view was that architects should learn to

operate computers properly if they wanted to be on control. In other words,

architects should learn to program if they wanted to take full advantage of

computers in design.

The greatest difference between his book and Mitchell, Liget and Kvan's is that

Schmitt's programs are developed inside a CAD package framework (in this case

AutoCAD), which avoids the need to program shapes from scratch. As noted by

Seebohm (2001), "by programming on top of existing 3D modeling applications, such

as AutoCAD with the AutoLisp language, it is possible to obtain useful and

rewarding results within a single course (compared to learning a computer language

and then developing graphics or modelling software)."

4.3. Generative Modeling
This coursebook was developed in 1995 by Paul Coates and his assistants for both an

undergraduate and a graduate programs in architecture at the University of East

London, where he was the director of the Centre for Evolutionary Computing in

Architecture. It included an introductory text with many examples of applications of

algorithms in design, especially in the modeling of urban morphology, with

references to Hillier's space syntax theory.

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 13

According to the author, the purpose of the book was to "introduce the idea of

computer generative modeling as a means of exploring key ideas in the design of the

built environment, by way of a series of worked exercises ... which go beyond the

standard customizing issues to allow experimentation with the automatic generation

of form, or generative modeling" (Coates, 1995:7).

The exercises in the book explored techniques such as random numbers, recursion,

shape grammars and cellular automata, and were developed in different

programming languages: AutoCAD's AutoLisp (

Figure 5), MiniCAD's Mini Pascal, GDL (Geometric Description Language),

Macromedia Director's Lingo, and ArchiCAD's built in scripting language.

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 14

Figure 5: AutoLisp program for generating a 3D spiral with simple blocks, as an
example of nested expressions in Coates's course book Generative Modelling.

As in Schmitt's book, Coates's exercises took advantage of a CAD package's pre-

existing commands and macros for building basic shapes. However, by presenting

examples in different languages, Coates avoided the focus on a specific CAD

package, emphasizing the consistency of programming logic throughout different

environments. According to him, "essential to book was the idea of an algorithm and

ways of implementing algorithms in a CAD system." He went on saying that "the

exigencies of computers today means that to get something done we have to make

use of a computer language and do some coding, but it should be remembered that

the code is just a means to an end" (p.7).

Coates's ideas about architectural design were very similar to Schmitt's: design was

based on vocabularies and rules. But Coates introduced other ideas from the field of

Artificial Intelligence, such as cellular automata, artificial life, chaotic behavior and

self-organization, pointing out the complexity of architectural systems and how

computation and programming could help us understand that complexity though

modeling.

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 15

5. A CONTEMPORARY EXAMPLE OF THE USE OF PROGRAMMING IN
ARCHITECTURAL DESIGN

As noted by Moneo (2005), it has become fashionable to design organic-shaped

buildings. However, DiCristina (2001) emphasizes that this “topological tendency”

does not simply mean curved surfaces, but the study of the geometrical properties

that remain unchanged when figures undergo continuous transformations,

something that requires computational knowledge for understanding and

implementing.

The new generation of architects must be able to develop designs that are adaptable

to a continuously changing urban environment, and programming may play an

important role in modeling these concepts to develop design through conditional

dependencies. In other words, contemporary, architecture is fundamentally about

relationships, and state of the art construction is characterized by the use of

expensive materials produced with great acuracy, frequently through automated

processes. A new generation of CAD software is being currently developed to

respond to these new requirements.

Since 2003, the SmartGeometry Group, an educational charity sponsored by Bentley

systems, have been organizing conferences, workshops and Summer schools with

the aim "furthering advanced education and research in the area of advanced 3D

CAD applications", and with the belief that "Computer Aided Design lends itself to

capturing the geometric relationships that form the foundation of

architecture" (Smart Geometry, 2006).

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 16

Their educational programs feature Generative Components

(

Figure 6), "a model-oriented design and programming environment, which

combines direct interactive manipulation design methods based on feature modeling

and constraints, with visual and traditional programming techniques." (Smart

Geometry, 2006). In this type of CAD software shapes can be defined in terms of

topological relationships that can also include conditional statements and variable

values (Aish, 2005). For example, beam 1 may be defined as starting at the edge of

beam 2 if it is long enough, or else starting at the middle of beam 3.

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 17

Figure 6: Generative Components software, with code window on the left.

However, according to Day (2006), to fully take advantage of a software like this, the

designer needs to be "part programmer", which requires "a logical approach to

problem solving." He cites Aish, who affirms that "geometric skills, compositional

skills and algorithmic skills will be the key to future design.” Generative

Components has already been tried in the design of complex buildings such as

6. A METHODOLOGY FOR TEACHING CAD PROGRAMMING

In this section propose a framework for the introduction of programming in the

architectural curriculum in five steps. My proposal aims at making the discipline of

programming both a means for the integration of other subjects, like in Papert's

principle, and a way to improve the quality of the design because it can encourage

students to make their design concepts more explicit.

This methodology is based on my own pedagogical experience at the School of Civil

Engineering, Architecture and Urban Design at the State University of Campinas,

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 18

Brazil, where I have taught programming courses for undergraduate and graduate

architecture students since 2002. Examples for steps one through three, with full

VBA codes, have been published in Celani (2003).

Although I have used AutoCAD's Visual Basic for Application (VBA), a scripting

version of Visual Basic, in my courses for practical reasons, I do not want to associate

my pedagogical proposal to any specific language. Most CAD packages nowadays

include their own scripting languages and built-in programming environments, and

the ideas presented below should be possible to implement in any context, except for

the last module, which requires an object-oriented language, such as VBA. Although

not all the object-oriented features are available in VBA, it includes "class modules"

that allow to define classes with properties, methods and event handlers. The

advantage of VBA in relation to other scripting languages embodied in CAD

packages is that is provides an easy way to develop interfaces. Besides, programs

can be embedded directly in drawing files, which makes loading and unloading

code unnecessary.

6.1. Step 1: Implementing calculations
The first step consists of writing simple scripts for implementing calculations - like

those introduced in different building technology classes, such as structural analysis

and HVAC - in the CAD environment. Through the implementation of simple

scripts that make formulas available in a CAD environment, students can start

seeing the usefulness of learning programming.

It is very easy, for example, to develop a script that calculates the window area

needed for adequately ventilating a given footage of interior space. If the dimensions

of a standard-sized window are given, the script can also calculate the number of

windows that must be inserted. To be able to implement a script like this, students

simply need to know about variable types, operators, and optionally some interface

interaction, if the CAD program chosen offers a simple way to develop user

interfaces.

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 19

6.2. Step 2: Parameterizing shapes
Although most CAD programs include macros for drawing customized rectangles,

oblongs end even more complex objects, such as staircases, through the specification

of parameters, it can be helpful to learn how to parameterize one's personal design

elements.

The proposed approach starts by exploring the CAD package's parametrical

possibilities until its limitations are reached Monedero (1997). Then, students can

develop their own parameterized shapes. One interesting idea is to encourage them

to identify families of buildings that differ only in certain parameters and thus

develop a program that allows to draw all these examples by inputting different

variables.

6.3. Step 3: Repeating code
The next step in this pedagogical strategy consist of automating repetitive tasks,

such as taking measurements and counting items to feed calculations. A script can

be written, for example, to automatically calculate the total window area for a room,

and then compare it to the room footage to see if ventilation is adequate.

Automation of repetitive tasks can also be applied to the drafting of architectural

elements such as stairs and railings.

For this purpose, code-looping techniques must be introduced. "For each" structures

allow iterating through a collection of objects, searching for those that were

specified, such as the windows that need to be measured. "Do while" structures, on

the other hand, allow to repeat actions as many times as needed. Such is the case, for

example, when steps must be distributed in a staircase, according to given

proportions.

6.4. Step 4: Algorithmizing the design process
The next step in our method starts with a reflection about design methods. It starts

with discussions about which parts of the design process can be automated and how

a design problem can be structured. Design parameters, constants, and constraints

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 20

must be established. The concept of conditionals - if then else - is then introduced,

along with the idea of nodes in a state-action search tree. The aim is to show

students that the same problem may have different solutions, represented by

different designs developed with different strategies.

 According to Stiny (1978:208), "because an algorithm must be specified in such

detail, just the attempt to construct an algorithm for a given process provides an

excellent means of exploring the process in all its aspects and features."

A typical example is the algorithmization of a simple layout, such as a bathroom or a

parking lot. This can be done by setting up step-by-step procedures that result in the

desired layout. However, design intentions must be made explicit in this process,

which involves dealing with unknown circumstances along the way, such as "will

the width of this lot be wide enough for displaying five car rows at 45o ? ".

6.5. Step 5: Defining architectural types
In The Logic of Architecture, Mitchell (1990) establishes an analogy between

architectural types and class definitions in object-oriented programming languages.

According to him, both have essential and accidental properties. The former are

characteristic of the type, while the latter are related to specific site conditions, being

decided at instantiation time. The comparison seems a good opportunity to establish

a discussion about using architectural types as heuristics - or shortcuts - to find

solutions to design problems that are likely to work out. To be able to implement an

architectural type computationally, students must first be introduced to object-

oriented programming concepts, such as class definition, object instantiation, object

properties and methods, encapsulation, inheritance, abstraction and polymorphism.

A typical example is the definition of a class of detached houses. Although all houses

have only one kitchen and living room, different instances may have different

numbers of bedrooms and bathrooms. Similarly, although all houses have doors and

windows as façade composition elements, some may be yellow while others may be

blue. At the same time that examples from architecture may help students

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 21

understand the new computational concepts, these concepts may as well teach them

how to work with typologies in a more explicit fashion.

7. DISCUSSION

The CAD programming courses taught at FEC-UNICAMP in the last two years have

shown that the introduction of computational design concepts before or along the

introduction of programming techniques is fundamental to make students

understand its relevance. With this knowledge, students are much more interested

in learning computer programming, overcoming typical prejudices, because they

can foresee meaningful applications for it. More than that, programming techniques

can teach them how to structure design problems.

Students can be taught to use programming as an "administrative tool", as in

Papert's principle (Minsky, 1988), to develop implementations that sew together

knowledge acquired in different courses. Even Architectural History contents may

be implemented in the form of programs that generate buildings in certain styles

and with certain proportions, which requires students to have a deep understanding

of their fundamental principles.

Programming may also be useful for exploring new shapes. Students can develop

their own tools, or use the new generation of parametric CAD software, which will

probably progressively require more programming skills. Besides, the introduction

of programming in the CAD curriculum may shift the present focus on the use of

computers exclusively for representation, and emphasize its role on the process of

design, rather than on products, such as suggested by Oxman (1999).

In summary, CAD programming is becoming increasingly important in architectural

education, and it presents many pedagogical possibilities. For example, the

development of applications can help students establish relationships between

different subjects, acting as a binding factor. The application of CAD programming

in the definition of form, with the use of a new generation of parametric CAD

software, on the other hand, may lead to a whole new concept of architectural

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 22

aesthetics, in which adaptability plays a crucial role. What is most important is to

allow this introduction to occur in a contextualized environment, always with the

necessary theoretical framework support. Future work on this topic must necessarily

include the development of strategies for effectively introducing programming in

the design studio.

8. REFERENCES

AISH, R. From intuition to precision. In: PROCEEDINGS OF ECAADE, 2005, Lisboa.
Anais… Lisboa: IST, 2005. p. 23-25.

BENTLEY, P. Evolutinary Design, San Francisco: Morgan Kaufmann, 1999.

BROADBENT, G. Design in architecture: architecture and the human sciences.
London: John Wiley & Sons, 1973.

CELANI, G. CAD Criativo. Rio de Janeiro: Campus-Elsevier, 2003.

COATES, P.; THUM, R. Generative Modelling - Student Workbook. 1995. 125f.
Apostila. University of East London, Londres.

DAY, M., The smart revolution. AEC magazine. Chicago, vol.53, n.12, p.63-65,
2006. Disponível em: <http://aecmag.com/index.php?option=com_content&task=
view&id=82&Itemid=35> Acesso em: 29 mar. 2006.

DiCRISTINA, G. The Topological Tendency in Architecture. In:____. Architecture &
Science. New York: Wiley, 2001. Introdução, p.21-53.

EASTMAN, C. Fundamental problems in the development of computer-based
architectural design models. In: KALAY, Y. (Org.). Computability of design. New
York: John Wiley and Sons, 1987. Cap. 32, p. 450-465.

FOLEY, J. D.; Van DAM, A.; FEINER, S. K., HUGHES; J. F., PHILLIPS, R. L.
Introduction to computer graphics. Reading, MA: Addison-Wesley, 1997.

HAREL, I.; PAPERT, S. Constructionism. Norwood: Ablex, 1991.

MARK, E.; MARTENS, B.; OXMAN, R. The Ideal Computer Curriculum. In: ECAADE,
2001, Helsinki. Anais... Helsinki: University of Technology, 2001. p.229-232.

MINSKY, M. The Society of Mind. New York: Touchstone, 1988.

MITCHELL, W. J.; LIGGET, R. S.; KVAN, T. The art of computer graphics
programming. New York: Van Nostrand Reinhold, 1987.

MITCHELL, W. J. After word: the design studio of the future. In: MITCHELL. W. J. &
MCCULLOUGH. M. (Orgs.) The electronic design studio. Cambridge, MA: The MIT
Press, 1990. Cap.32, p.450-465.

MONEDERO, J. Parametric design: A review and some experiences. ECAADE, 1997,
Vienna. Anais... Vienna: Vienna University of Technology, 1997. p.29-35.

MONEO, R. Theoretical Anxiety and Design Strategies in the Work of Eight
Contemporary Architects. Cambridge, MA: The MIT Press, 2005.

Vol. 3, nΟ 2, Novembro de 2008 Gestão & Tecnologia de Projetos 23

MONTAGU, A. et al., 2001, Developments in Latin America – A Field Report, In:
ECAADE, 2001, Helsinki. Anais... Helsinki: University of Technology, 2001. p.28-32.

NEGROPONTE, N. Soft architecture machines. Cambridge, MA: The MIT Press,
1975.

OXMAN, R. Educating the designerly thinker. Design Studies. Cambridge, v.20, n.2,
p.21-31, mar. 1999.

PAPERT, S. Mindstorms. New York: Basic Books, 1980.

RESNICK, M. Turtles, Termites and Traffic Jams. Cambridge. MA: The MIT
Press, 1994.

RICHENS, P. The next ten years. In: Computers in architecture: tools for
design. Essex: Longman, 1992. cap.2, p.21-53.

ROE, A. G., Using Visual Basic with AutoCAD. Albany, NY: Thomson Learning /
AutoDesk Press, 2001.

SCHMITT, G. Microcomputer Aided Design for Architects and Designers. New
York: John Wiley & Sons, 1988.

SEEBOHM, T. The Ideal Digital Design Curriculumn: Its Bases and its Content. In:
ECAADE, 2001, Helsinki. Anais... Helsinki: University of Technology, 2001. p.198-
202.

SMART GEOMETRY GROUP. Home page. 2006. Disponível em:
<http://www.smartgeometry.org>. Accesso em: 01/junho/2006.

STINY, G. Algorithmic aesthetics: computer models for
criticism and design in the arts. Berkeley: University of California Press, 1978.

YAKELEY, M. Digitally mediated design – using computer programming to
develop a personal design process. 2000, 155f. Tese (Doutorado em
Architecture: Design and Computation). Massachusetts Institute of Technology,
Cambridge, MA.

