Toxina Botulínica do Tipo A: mecanismo de ação

Autores

  • Maria Matilde de Mello Sposito Universidade de São Paulo. Faculdade de Medicina

DOI:

https://doi.org/10.11606/issn.2317-0190.v16i1a103037

Palavras-chave:

Toxinas Botulínicas Tipo A, Sistema Nervoso Central/efeitos da droga, Literatura de Revisão como Assunto

Resumo

Neste trabalho de revisão, são abordados inicialmente aspectos históricos das pesquisas para a obtenção e utilização da toxina botulínica do tipo A (BoNT/A), inicialmente como arma biológica e depois como medicamento. Em seguida descreve-se detalhadamente a estrutura e síntese da BoNT/A, com ênfase às cadeias leve e pesada para na seqüência descrever-se o mecanismo de ação. O mecanismo de ação é explorado nos seus aspectos de relaxamento muscular sobre músculos estriados (inibição da liberação de acetilcolina) e ação sobre o reflexo de estiramento medula; ação antinociceptiva, através do bloqueio da liberação de peptídeos relacionados com a dor e sobre o sistema nervoso autônomo, atuando sobre glândulas (salivar, sudorípara e lacrimal) e sobre bexiga e próstata. Ainda discute-se os efeitos diretos e indiretos da BoNT/A sobre o Sistema Nervoso Central, os aspectos relacionados à antigenicidade quando utilização deste recurso terapêutico e as direções futuras para este recurso.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Poli MA,Lebeda FJ. An overview of clostridial neurotoxins. In: Massaro EJ. Handbook of neurotoxicology. Totowa: Human Press; 2002. p. 293-304.

Hicks RP, Hartell MG, Nichols DA, Bhattacharjee AK, van Hamont JE, Skillman DR. The medicinal chemistry of botulinum, ricin and anthrax toxins. Curr Med Chem. 2005;12(6):667-90.

Middlebrook JL, Franz DR. Botulinum Toxin. In: Sidell FR, Takafuji ET, Franz DR. Textbook of Military Medicine. Falls Church: Office of the Surgeon General, US Army; 1997. p 643-54.

Smart JK. History of chemical and biological warfare: an n American perspective. In: Sidell FR, Takafuji ET, Franz DR. Textbook of Military Medicine. Falls Church: Office of the Surgeon General, US Army; 1997. p 9-86.

Jankovic J. Botulinum toxin in clinical practice. J Neurol Neurosurg Psychiatry. 2004;75(7):951-7.

Aoki KR. Botulinum toxin: a successful therapeutic protein. Curr Med Chem. 2004;11(23):3085-92.

Poulain B, Popoff MR, Molgó J. How do the botulism neurotoxins block neurotransmitter release: from botulism to the molecular mechanism of action. The Botulinum J. 2008;1(1):14-87.

Turton K, Chaddock JA, Acharya KR. Botulinum and tetanus neurotoxins: structure, function and therapeutic utility. Trends Biochem Sci. 2002;27(11):552-8.

Dressler D, Benecke R. Pharmacology of therapeutic botulinum toxin preparations. Disabil Rehabil. 2007;29(23):1761-8.

Meunier FA, Herreros J, Schiavo G, Poulain B, Molgó J. Molecular mechanism of action of botulinal neurotoxins and the synaptic remodeling they induce in vivo at skeletal neuromuscular junction. In: Massaro EJ. Handbook of neurotoxicology. Totowa: Human Press; 2002. p 305-47.

Popoff MR, Marvaud JC, Raffestin S. Mechanism of action and therapeutic uses of botulinum and tetanus neurotoxins. Ann Pharm Fr. 2001;59(3):176-90.

Aoki KR. Pharmacology of Botulinum neurotoxins. Oper Tech Otolaryngol Head Neck Surg. 2004;15(2):81-5.

Silberstein S. Botulinum neurotoxins: origins and basic mechanisms of action. Pain Pract. 2004;4 Suppl 1:S19-26.

Frenkl TL, Rackley RR. Injectable neuromodulatory agents: botulinum toxin therapy. Urol Clin North Am. 2005;32(1):89-99.

Wenzel RG. Pharmacology of botulinum neurotoxin serotype A. Am J Health Syst Pharm. 2004;61(22 Suppl 6):S5-10.

Aoki KR. Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicology. 2005;26(5):785-93.

Lipham WJ. What is botulinum toxin and how does it works? In: Lipham WJ. Cosmetic and clinical application of Botulinum Toxin. Thorofare: Slack; 2004. p. 5-9.

Paiva A, Meunier FA, Molgó J, Aoki KR, Dolly JO. Functional repair of motor end-plates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci USA. 1999;96(6):3200-5.

Dressler D, Saberi FA, Barbosa ER. Botulinum toxin: mechanisms of action. Arq Neuropsiquiatr. 2005;63(1):180-5.

Yoshida K, Kaji R, Kubori T, Kohara N, Iizuka T, Kimura J. Muscle afferent block for the treatment of oromandibular dystonia. Mov Disord. 1998;13(4):699-705.

Aoki KR. Pharmacology and immunology of botulinum toxin serotypes. J Neurol. 2001;248 Suppl 1:3-10.

Casale R, Tugnoli V. Botulinum toxin for pain. Drugs R D. 2008;9(1):11-27.

Welch MJ, Purkiss JR, Foster KA. Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon. 2000;38(2):245-58.

Durham PL, Cady R, Cady R. Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy. Headache. 2004;44(1):35-42.

Cui M, Khanijou S, Rubino J, Aoki KR. Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain. 2004;107(1-2):125-33.

Cui M, Aoki KR. Mechanisms of antinociceptive effect of subcutaneous Botox: inhibition of peripheral and central nociceptive processing. In: Olesen J, Silberstein SD, Tfelt-Hansen P. Preventive pharmacotherapy of headache disorders. Oxford: Oxford University Press; 2004. p.158-62.

Morenilla CP, Planells RC, Garcia NS, Ferrer AM. Regulated exocytose contributes to protein kinase C potentialization of vanilloid receptor activity. J Biol Chem. 2004;279:2566-72.

Göbel H. Botulinum toxin A in pain management: mechanisms of action and rationale for optimum use. In: Jost WH. Botulinum toxin in painful disease. Basel: Karger; 2003. p.14-22.

Dressler D, Benecke R. Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol. 2003;49(1):34-8.

Apostolidis A, Fowler CJ. The use of botulinum neurotoxin type A (BoNTA) in urology. J Neural Transm. 2008;115(4):593-605.

Borodic GE, Acquadro M, Johnson EA. Botulinum toxin therapy for pain and inflammatory disorders:mechanisms and therapeutic effects. Expert Opin Investig Drugs. 2001;10(8):1531-44.

Kreyden OP, Scheidegger EP. Anatomy of the sweat glands, pharmacology of botulinum toxin, and distinctive syndromes associated with hyperhidrosis. Clin Dermatol. 2004;22(1):40-4.

Kellogg DL Jr, Pérgola PE, Piest KL, Kosiba WA, Crandall CG, Grossmann M, et al. Cutaneous active vasodilation in humans is mediated by cholinergic nerve cotransmission. Circ Res. 1995;77(6):1222-8.

Apostolidis A, Haferkamp A, Aoki KR. Understanding the role of botulinum toxin A in the treatment of the overactive bladder-more than just muscle relaxation. Eur Urol. 2006;Suppl 5:670-8.

Apostolidis A, Dasgupta P, Fowler CJ. Proposed mechanism for the efficacy of injected botulinum toxin in the treatment of human detrusor overactivity. Eur Urol. 2006;49(4):644-50.

Sahai A, Khan MS, Le Gall N, Dasgupta P; GKT Botulinum Study Group. Urodynamic assessment of poor responders after botulinum toxin-A treatment for overactive bladder. Urology. 2008;71(3):455-9.

Lemack GE. Intradetrusor botulinum toxin injections for neurogenic overactive bladder: are we there yet? Eur Urol. 2008;53(2):240-1.

Chuang YC, Yoshimura N, Wu M, Huang CC, Chiang PH, Tyagi P, et al. Intraprostatic capsaicin injection as a novel model for nonbacterial prostatitis and effects of botulinum toxin A. Eur Urol. 2007;51(4):1119-27.

Maria G, Brisinda G, Civello IM, Bentivoglio AR, Sganga G, Albanese A. Relief by botulinum toxin of voiding dysfunction due to benign prostatic hyperplasia: results of a randomized, placebo-controlled study. Urology. 2003;62(2):259-64.

Chuang YC, Chiang PH, Huang CC, Yoshimura N, Chancellor MB. Botulinum toxin type A improves benign prostatic hyperplasia symptoms in patients with small prostates. Urology. 2005;66(4):775-9.

Chuang YC, Tu CH, Huang CC, Lin HJ, Chiang PH, Yoshimura N, et al. Intraprostatic injection of botulinum toxin type-A relieves bladder outlet obstruction in human and induces prostate apoptosis in dogs. BMC Urol. 2006;6:12.

Wiegand H, Erdmann G, Wellhöner HH. 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection. Naunyn Schmiedebergs Arch Pharmacol. 1976;292(2):161-5.

Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M. Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci. 2008;28(14):3689-96.

Kuehn BM. Studies, reports say botulinum toxins may have effects beyond injection site. JAMA. 2008;299(19):2261-3.

Moreno-López B, de la Cruz RR, Pastor AM, Delgado-García JM. Botulinum neurotoxin alters the discharge characteristics of abducens motoneurons in the alert cat. J Neurophysiol. 1994;72(4):2041-4.

Moreno-López B, de la Cruz RR, Pastor AM, Delgado-García JM. Effects of botulinum neurotoxin type A on abducens motoneurons in the cat: alterations of the discharge pattern. Neuroscience. 1997;81(2):437-55.

Downloads

Publicado

2009-03-09

Edição

Seção

Artigo de Revisão

Como Citar

1.
Sposito MM de M. Toxina Botulínica do Tipo A: mecanismo de ação. Acta Fisiátr. [Internet]. 9º de março de 2009 [citado 17º de abril de 2024];16(1):25-37. Disponível em: https://www.revistas.usp.br/actafisiatrica/article/view/103037