A estimulação elétrica funcional (FES) e a plasticidade do sistema nervoso central: revisão histórica

Autores

  • Rebeca Boltes Cecatto Universidade de São Paulo. Faculdade de Medicina
  • Gerson Chadi Universidade de São Paulo. Faculdade de Medicina

DOI:

https://doi.org/10.5935/0104-7795.20120040

Palavras-chave:

Estimulação Elétrica, Plasticidade Neuronal, Reabilitação, Revisão

Resumo

Estudos têm revelado modificações plásticas neuronais concomitantes a melhora clínica de pacientes portadores de lesões neurológicas e submetidos às terapias de estimulação, sugerindo que as respostas plásticas observadas no tecido neuronal podem refletir a recuperação funcional encontrada e ser dependentes, pelo menos em parte, da estimulação externa. A literatura já indica também que as terapias de reabilitação mais promissoras são aquelas que interagem com as características plásticas naturais do SNC, encontrando no potencial endógeno de recuperação do tecido lesado o substrato anatômico necessário para a sua atuação. A interpretação desses resultados permanece ambígua, já que há uma grande variabilidade nas respostas neurofisiológicas e comportamentais para as técnicas de estimulação estudadas. Nesse sentido, uma nova área de atuação surge como perspectiva futura promissora no entendimento dos mecanismos que regulam a recuperação funcional após lesões neurológicas: o uso terapêutico da estimulação da plasticidade do SNC. Por exemplo com o uso de terapias de estimulação sensitiva, terapias baseadas na robótica e na realidade virtual e as terapias de neuromodulação baseadas na estimulação cortical direta, na estimulação com o TMS e na estimulação elétrica funcional periférica (FES). Objetivo: Este estudo tem por objetivo realizar uma revisão histórica da literatura para pontuar os principais marcos no estudo da estimulação elétrica periférica e de seus possíveis efeitos no SNC, sobretudo em relação a FES. Método: Foi utilizada a base de dados PubMed e foram selecionados 169 artigos de melhor rigor metodológico, maior relevância histórica e maior contribuição na construção dos paradigmas que norteiam o estudo dos efeitos da FES na plasticidade do sistema nervoso central. Resultados: A FES pode ser encarada como uma técnica promissora na recuperação motora de doentes com sequela de alterações neurológicas de origem central tanto pela sua capacidade de levar a um treino funcional e melhora clínica sensitivomotora, aspectos já consagrados na literatura, quanto pela sua capacidade de interagir com a plasticidade do SNC, um aspecto que ainda precisa ser estudado.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Condensed Program. American Psychologist. 1947;2(8):255-352. http://dx.doi.org/10.1037/h0063667

Ward NS. The neural substrates of motor recovery after focal damage to the central nervous system. Arch Phys Med Rehabil. 2006;87(12 Suppl 2):S30-5. http://dx.doi.org/10.1016/j.apmr.2006.08.334

Platz T. Motor system recovery: evidence from animal experiments, human functional imaging and clinical studies. Restor Neurol Neurosci. 2004;22(3-5):137-42.

Nudo RJ, Plautz EJ, Frost SB. Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve. 2001;24(8):1000-19. http://dx.doi.org/10.1002/mus.1104

Nudo RJ. Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med. 2003;(41 Suppl):7-10. http://dx.doi.org/10.1080/16501960310010070

Chen R, Cohen LG, Hallett M. Nervous system reorganization following injury. Neuroscience. 2002;111(4):761-73. http://dx.doi.org/10.1016/S03064522(02)00025-8

Stein DG, Hoffman SW. Concepts of CNS plasticity in the context of brain damage and repair. J Head Trauma Rehabil. 2003;18(4):317-41. http://dx.doi.org/10.1097/00001199-200307000-00004

Bütefisch CM.Plasticity in the human cerebral cortex: lessons from the normal brain and from stroke. Neuroscientist. 2004;10(2):163-73. http://dx.doi.org/10.1177/1073858403262152

Elbert T, Rockstroh B. Reorganization of human cerebral cortex: the range of changes following use and injury. Neuroscientist. 2004;10(2):129-41. http://dx.doi.org/10.1177/1073858403262111

Johansson BB. Brain plasticity in health and disease. Keio J Med. 2004;53(4):231-46. http://dx.doi.org/10.2302/kjm.53.231

Bayona NA, Bitensky J, Teasell R. Plasticity and reorganization of the uninjured brain. Top Stroke Rehabil. 2005;12(3):1-10. http://dx.doi.org/10.1310/A422-G91U-Q4HB-86XC

Kelly C, Foxe JJ, Garavan H. Patterns of normal human brain plasticity after practice and their implications for neurorehabilitation. Arch Phys Med Rehabil. 2006;87(12 Suppl 2):S20-9. http://dx.doi.org/10.1016/j.apmr.2006.08.333

Ziemann U, Meintzschel F, Korchounov A, Ilić TV. Pharmacological modulation of plasticity in the human motor cortex. Neurorehabil Neural Repair. 2006;20(2):243-51. http://dx.doi.org/10.1177/1545968306287154

Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225-39. http://dx.doi.org/10.1044/1092-4388(2008/018)

Kandel ER. The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep. 2001;21(5):565-611. http://dx.doi.org/10.1023/A:1014775008533

Richards LG, Stewart KC, Woodbury ML, Senesac C, Cauraugh JH. Movement-dependent stroke recovery: a systematic review and meta-analysis of TMS and fMRI evidence. Neuropsychologia. 2008;46(1):3-11. http://dx.doi.org/10.1016/j.neuropsychologia.2007.08.013

Cramer SC. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol. 2008;63(3):272-87. http://dx.doi.org/10.1002/ana.21393

Cramer SC. Repairing the human brain after stroke. II. Restorative therapies. Ann Neurol. 2008;63(5):549-60. http://dx.doi.org/10.1002/ana.21412

Bütefisch CM, Davis BC, Wise SP, Sawaki L, Kopylev L, Classen J, et al. Mechanisms of use-dependent plasticity in the human motor cortex. Proc Natl Acad Sci USA. 2000;97(7):3661-5. http://dx.doi.org/10.1073/pnas.97.7.3661

Carmichael ST. Plasticity of cortical projections after stroke. Neuroscientist. 2003;9(1):64-75. http://dx.doi.org/10.1177/1073858402239592

Cramer SC, Riley JD. Neuroplasticity and brain repair after stroke. Curr Opin Neurol. 2008;21(1):76-82. http://dx.doi.org/10.1097/WCO.0b013e3282f36cb6

Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861-72. http://dx.doi.org/10.1038/nrn2735

Benowitz LI, Carmichael ST. Promoting axonal rewiring to improve outcome after stroke. Neurobiol Dis. 2010;37(2):259-66. http://dx.doi.org/10.1016/j.nbd.2009.11.009

Carmichael ST. Translating the frontiers of brain repair to treatments: starting not to break the rules. Neurobiol Dis. 2010;37(2):237-42. http://dx.doi.org/10.1016/j.nbd.2009.09.005

Wittenberg GF. Experience, cortical remapping, and recovery in brain disease. Neurobiol Dis. 2010;37(2):252-8. http://dx.doi.org/10.1016/j.nbd.2009.09.007

Wang W, Collinger JL, Perez MA, Tyler-Kabara EC, Cohen LG, Birbaumer N, et al. Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys Med Rehabil Clin N Am. 2010;21(1):157-78. http://dx.doi.org/10.1016/j.pmr.2009.07.003

Meintzschel F, Ziemann U. Modification of practice-dependent plasticity in human motor cortex by neuromodulators. Cereb Cortex. 2006;16(8):1106-15. http://dx.doi.org/10.1093/cercor/bhj052

Dobkin BH. Do electrically stimulated sensory inputs and movements lead to long-term plasticity and rehabilitation gains? Curr Opin Neurol. 2003;16(6):685-91.

Dobkin BH. Neurobiology of rehabilitation. Ann N Y Acad Sci. 2004;1038:148-70. http://dx.doi.org/10.1196/annals.1315.024

Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004;3(9):528-36. http://dx.doi.org/10.1016/S1474-4422(04)00851-8

Nudo RJ. Functional and structural plasticity in motor cortex: implications for stroke recovery. Phys Med Rehabil Clin N Am. 2003;14(1 Suppl):S57-76. http://dx.doi.org/10.1016/S1047-9651(02)00054-2

Krakauer JW, Shadmehr R. Consolidation of motor memory.Trends Neurosci. 2006;29(1):58-64. http://dx.doi.org/10.1016/j.tins.2005.10.003

Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84-90. http://dx.doi.org/10.1097/01.wco.0000200544.29915.cc

Moucha R, Kilgard MP. Cortical plasticity and rehabilitation. Prog Brain Res. 2006;157:111-22. http://dx.doi.org/10.1016/S0079-6123(06)57007-4

Daly JJ, Ruff RL. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Scientific World J. 2007;7:2031-45. http://dx.doi.org/10.1100/tsw.2007.299

Nicolelis MA, Lebedev MA. Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat Rev Neurosci. 2009;10(7):530-40. http://dx.doi.org/10.1038/nrn2653

Sadowsky CL, McDonald JW. Activity-based restorative therapies: concepts and applications in spinal cord injury-related neurorehabilitation. Dev Disabil Res Rev. 2009;15(2):112-6. http://dx.doi.org/10.1002/ddrr.61

Howells DW, Donnan GA. Where will the next generation of stroke treatments come from? PLoS Med. 2010;7(3):e1000224. http://dx.doi.org/10.1371/journal.pmed.1000224

Hummel FC, Cohen LG. Drivers of brain plasticity. Curr Opin Neurol. 2005;18(6):667-74. http://dx.doi.org/10.1097/01.wco.0000189876.37475.42

Reis J, Robertson E, Krakauer JW, Rothwell J, Marshall L, Gerloff C, et al. Consensus: Can tDCS and TMS enhance motor learning and memory formation? Brain Stimul. 2008;1(4):363-9. http://dx.doi.org/10.1016/j.brs.2008.08.001

Bolognini N, Pascual-Leone A, Fregni F. Using noninvasive brain stimulation to augment motor training-induced plasticity. J Neuroeng Rehabil. 2009;6:8. http://dx.doi.org/10.1186/1743-0003-6-8

Cambridge NA. Electrical apparatus used in medicine before 1900. Proc R Soc Med. 1977;70(9):635-41.

Faraday M. Experimental researches in electricity: reprinted from the Philosophical Transactions of 1831-1843, 1846-1852. Richard and John Edward Taylor: 1839.

Galvani L, Green R, Aldini, G. De viribus electricitatis in motu musculari commentarius: a translation of luigi Galvani's de viribus electricitatisin motu musculari commentarius. Licht: 1953.

Fodstad H, Hariz M. Electricity in the treatment of nervous system disease. Acta Neurochir Suppl. 2007;97(Pt 1):11-9.

Duchenne G. De l'électrisation localisée: et de son application a la physiologie, a la pathologie et a la thérapeutique. Paris: Chez J.B. Baillière; 1855.

Erdmann B. Die oertliche anwendung der elektricitaet in der physiologie, pathologie und therapie. Leipzig: Barth; 1856.

Beard G. A Practical treatise on the medical & surgical uses of electricity. New York: William Wood; 1881.

Bartholow R. Art. I - Experimental investigations into the functions of the human brain. Am J Med Sci. 1874;66:305-13. http://dx.doi.org/10.1097/00000441-187404000-00001

Horsley V, Clarke RH. The structure and functions of the cerebellum examined by a new method. Brain 1908:31;45-124. http://dx.doi.org/10.1093/brain/31.1.45

Ramey E, O'Doherty D. Electrical studies on the unanesthetized brain: a symposium with 49 participants. New York: P. B. Hoeber; 1960.

Nobel Lectures In Physiology Or Medicine 1942 -1962. New Jersey: World Scientific; 1999.

Feldman RP, Goodrich JT. Psychosurgery: a historical overview. Neurosurgery. 2001;48(3):647-57. http://dx.doi.org/10.1097/00006123-200103000-00041

Sackler AM. The great physiodynamic therapies in psychiatry: an historical reappraisal. New York: Hoeber-Harper; 1956.

Liberson WT, Holmquest HJ, Scot D, Dow M. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961;42:101-5.

Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971-9. http://dx.doi.org/10.1126/science.150.3699.971

Moe J, Post H. Functional electrical stimulation for ambulation in hemiplegia. J Lancet. 1962;82:285-8.

Peckham PH, Knutson JS. Functional electrical stimulation for neuromuscular applications.Annu Rev Biomed Eng. 2005;7:327-60. http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140103

Pomeroy VM, King LM, Pollock A, Baily-Hallam A, Langhorne P. Electrostimulation for Promoting Recovery of Movement or Functional Ability After Stroke. Systematic Review and Meta-Analysis. Stroke. 2006;37:2441-2. http://dx.doi.org/10.1161/01.STR.0000236634.26819.cc

Kroon JR, Ijzerman MJ, Chae J, Lankhorst GJ, Zilvold G. Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke. J Rehabil Med. 2005;37(2):65-74. http://dx.doi.org/10.1080/16501970410024190

Alfieri V. Electrical treatment of spasticity. Reflex tonic activity in hemiplegic patients and selected specific electrostimulation. Scand J Rehabil Med. 1982;14(4):177-82.

Lourenção MI, Battistella LR, de Brito CM, Tsukimoto GR, Miyazaki MH. Effect of biofeedback accompanying occupational therapy and functional electrical stimulation in hemiplegic patients. Int J Rehabil Res. 2008;31(1):33-41. http://dx.doi.org/10.1097/MRR.0b013e3282f4524c

Stefanovska A, Vodovnik L, Gros N, Rebersek S, Acimović-Janezic R. FES and spasticity. IEEE Trans Biomed Eng. 1989;36(7):738-45. http://dx.doi.org/10.1109/10.32106

Glanz M, Klawansky S, Stason W, Berkey C, Chalmers TC. Functional electrostimulation in poststroke rehabilitation: a meta-analysis of the randomized controlled trials. Arch Phys Med Rehabil. 1996;77(6):549-53. http://dx.doi.org/10.1016/S00039993(96)90293-2

itrijevic MM, Dimitrijevic MR. Clinical elements for the neuromuscular stimulation and functional electrical stimulation protocols in the practice of neurorehabilitation. Artif Organs. 2002;26(3):256-9. http://dx.doi.org/10.1046/j.1525-1594.2002.06946.x

Chae J. Neuromuscular electrical stimulation for motor relearning in hemiparesis. Phys Med Rehabil Clin N Am. 2003;14(1 Suppl):S93-109. http://dx.doi.org/10.1016/S1047-9651(02)00051-7

Aoyagi Y, Tsubahara A. Therapeutic orthosis and electrical stimulation for upper extremity hemiplegia after stroke: a review of effectiveness based on evidence. Top Stroke Rehabil. 2004;11(3):9-15. http://dx.doi.org/10.1310/6Q5Q-69PU-NLQ9-AVMR

Bolton DA, Cauraugh JH, Hausenblas HA. Electromyogram-triggered neuromuscular stimulation and stroke motor recovery of arm/hand functions: a meta-analysis. J Neurol Sci. 2004;223(2):121-7. http://dx.doi.org/10.1016/j.jns.2004.05.005

Vitenzon AS, Mironov EM, Petrushanskaya KA. Functional electrostimulation of muscles as a method for restoring motor functions. Neurosci Behav Physiol. 2005;35(7):709-14. http://dx.doi.org/10.1007/s11055-005-0114-1

Chae J, Sheffler L, Knutson J. Neuromuscular electrical stimulation for motor restoration in hemiplegia. Top Stroke Rehabil. 2008;15(5):412-26. http://dx.doi.org/10.1310/tsr1505-412

O'Dell MW, Lin CC, Harrison V. Stroke rehabilitation: strategies to enhance motor recovery. Annu Rev Med. 2009;60:55-68. http://dx.doi.org/10.1146/annurev.med.60.042707.104248

Bassel-Duby R, Olson EN. Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem. 2006;75:19-37. http://dx.doi.org/10.1146/annurev.biochem.75.103004.142622

Olson AK, Eadie BD, Ernst C, Christie BR. Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus. 2006;16(3):250-60. http://dx.doi.org/10.1002/hipo.20157

Wolpaw JR, Carp JS. Plasticity from muscle to brain. Prog Neurobiol. 2006;78(3-5):233-63. http://dx.doi.org/10.1016/j.pneurobio.2006.03.001

English AW, Schwartz G, Meador W, Sabatier MJ, Mulligan A. Electrical stimulation promotes peripheral axon regeneration by enhanced neuronal neurotrophin signaling. Dev Neurobiol. 2007;67(2):158-72. http://dx.doi.org/10.1002/dneu.20339

Pette D, Vrbová G. What does chronic electrical stimulation teach us about muscle plasticity? Muscle Nerve. 1999;22(6):666-77. http://dx.doi.org/10.1002/(SICI)1097-4598(199906)22:6<666::AID-MUS3>3.0.CO;2-Z

Al-Majed AA, Neumann CM, Brushart TM, Gordon T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci. 2000;20(7):2602-8.

Al-Majed AA, Brushart TM, Gordon T. Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci. 2000;12(12):4381-90.

Busetto G, Buffelli M, Tognana E, Bellico F, Cangiano A. Hebbian mechanisms revealed by electrical stimulation at developing rat neuromuscular junctions. J Neurosci. 2000;20(2):685-95.

Brushart TM, Jari R, Verge V, Rohde C, Gordon T. Electrical stimulation restores the specificity of sensory axon regeneration. Exp Neurol. 2005;194(1):221-9. http://dx.doi.org/10.1016/j.expneurol.2005.02.007

Geremia NM, Gordon T, Brushart TM, Al-Majed AA, Verge VM. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp Neurol. 2007;205(2):347-59. http://dx.doi.org/10.1016/j.expneurol.2007.01.040

Riso RR, Ignagni AR, Keith MW. Cognitive feedback for use with FES upper extremity neuroprostheses. IEEE Trans Biomed Eng. 1991;38(1):29-38. http://dx.doi.org/10.1109/10.68206

Prochazka A, Gauthier M, Wieler M, Kenwell Z. The bionic glove: an electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia. Arch Phys Med Rehabil. 1997;78(6):608-14. http://dx.doi.org/10.1016/S0003-9993(97)90426-3

Dunning K, Berberich A, Albers B, Mortellite K, Levine PG, Hill Hermann VA, et al. A four-week, task-specific neuroprosthesis program for a person with no active wrist or finger movement because of chronic stroke. Phys Ther. 2008;88(3):397-405. http://dx.doi.org/10.2522/ptj.20070087

Alon G, Sunnerhagen KS, Geurts AC, Ohry A. A home-based, self-administered stimulation program to improve selected hand functions of chronic stroke. NeuroRehabilitation. 2003;18(3):215-25.

Alon G, Ring H. Gait and hand function enhancement following training with a multi-segment hybridorthosis stimulation system in stroke patients. J Stroke Cerebrovasc Dis. 2003;12(5):209-16. http://dx.doi.org/10.1016/S1052-3057(03)00076-4

Alon G, McBride K. Persons with C5 or C6 tetraplegia achieve selected functional gains using a neuroprosthesis. Arch Phys Med Rehabil. 2003;84(1):119-24. http://dx.doi.org/10.1053/apmr.2003.50073

Alon G. Use of neuromuscular electrical stimulation in neureorehabilitation: a challenge to all. J Rehabil Res Dev. 2003;40(6):ix-xii. http://dx.doi.org/10.1682/JRRD.2003.11.0009

Ring H, Rosenthal N. Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. J Rehabil Med. 2005;37(1):32-6. http://dx.doi.org/10.1080/16501970410035387

Hara Y. Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients. J Nippon Med Sch. 2008;75(1):4-14. http://dx.doi.org/10.1272/jnms.75.4

Wolpaw JR. Brain-computer interfaces as new brain output pathways. J Physiol. 2007;579(Pt 3):613-9. http://dx.doi.org/10.1113/jphysiol.2006.125948

Moritz CT, Perlmutter SI, Fetz EE. Direct control of paralysed muscles by cortical neurons. Nature. 2008;456(7222):639-42. http://dx.doi.org/10.1038/nature07418

DeFelipe J. Brain plasticity and mental processes: Cajal again. Nat Rev Neurosci. 2006;7(10):811-7. http://dx.doi.org/10.1038/nrn2005

Berlucchi G. The origin of the term plasticity in the neurosciences: Ernesto Lugaro and chemical synaptic transmission. J Hist Neurosci. 2002;11(3):305-9. http://dx.doi.org/10.1076/jhin.11.3.305.10396

Bloedel JR. Ebner TJ, Wise SP. The acquisition of motor behavior in vertebrates. Cambridge: Bradford; 1996.

Cotman C. Neuronal plasticity. New York: Raven; 1978.

Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23:649-711. http://dx.doi.org/10.1146/annurev.neuro.23.1.649

Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791-4. http://dx.doi.org/10.1126/science.272.5269.1791

Ward NS. Functional reorganization of the cerebral motor system after stroke. Curr Opin Neurol. 2004;17(6):725-30. http://dx.doi.org/10.1097/00019052-200412000-00013

Johansson BB. Functional and cellular effects of environmental enrichment after experimental brain infarcts. Restor Neurol Neurosci. 2004;22(3-5):163-74.

Will B, Kelche C. Environmental approaches to recovery of function from brain damage: a review of animal studies (1981 to 1991). Adv Exp Med Biol. 1992;325:79-103. http://dx.doi.org/10.1007/978-14615-3420-4_5

Zhao LR, Mattsson B, Johansson BB. Environmental influence on brain-derived neurotrophic factor messenger RNA expression after middle cerebral artery occlusion in spontaneously hypertensive rats. Neuroscience. 2000;97(1):177-84. http://dx.doi.org/10.1016/S0306-4522(00)00023-3

Biernaskie J, Corbett D. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci. 2001;21(14):5272-80.

Komitova M, Perfilieva E, Mattsson B, Eriksson PS, Johansson BB. Effects of cortical ischemia and postischemic environmental enrichment on hippocampal cell genesis and differentiation in the adult rat. J Cereb Blood Flow Metab. 2002;22(7):852-60. http://dx.doi.org/10.1097/00004647-200207000-00010

Yale University, Library. Report of the librarian of Yale University. New Haven: Yale University; 1906.

Burke RE. Sir Charles Sherrington's the integrative action of the nervous system: a centenary appreciation. Brain. 2007;130(Pt 4):887-94.

Celnik PA, Cohen LG. Modulation of motor function and cortical plasticity in health and disease. Restor Neurol Neurosci. 2004;22(3-5):261-8.

Curtis DR, Eccles JC. Synaptic action during and after repetitive stimulation. J Physiol. 1960;150:374-98.

Herrera DG, Robertson HA. Activation of c-fos in the brain. Prog Neurobiol. 1996;50(2-3):83-107. http://dx.doi.org/10.1016/S0301-0082(96)00021-4

Coggeshall RE. Fos, nociception and the dorsal horn. Prog Neurobiol. 2005;77(5):299-352.

Wei F, Zhao ZQ. Effect of TENS-like stimulation on C afferent-induced c-fos expression in the rat spinal cord. Neuroreport. 1995;6(12):1659-63. http://dx.doi.org/10.1097/00001756-199508000-00017

Willcockson HH, Taylor-Blake B, Light AR. Induction of fos-like immunoreactivity by electrocutaneous stimulation of the rat hindpaw. Somatosens Mot Res. 1995;12(2):151-61. http://dx.doi.org/10.3109/08990229509101506

Lever IJ, Bradbury EJ, Cunningham JR, Adelson DW, Jones MG, McMahon SB, et al. Brain-derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. J Neurosci. 2001;21(12):4469-77.

Buitrago MM, Luft AR, Thakor NV, Blue ME, Hanley DF. Effects of somatosensory electrical stimulation on neuronal injury after global hypoxia-ischemia. Exp Brain Res. 2004;158(3):336-44. http://dx.doi.org/10.1007/s00221-004-1906-1

Burnett MG, Shimazu T, Szabados T, Muramatsu H, Detre JA, Greenberg JH. Electrical forepaw stimulation during reversible forebrain ischemia decreases infarct volume. Stroke. 2006;37(5):1327-31. http://dx.doi.org/10.1161/01.STR.0000217305.82123.d8

Weingarden H, Ring H. Functional electrical stimulation-induced neural changes and recovery after stroke. Eura Medicophys. 2006;42(2):87-90.

Van Camp N, Verhoye M, Van der Linden A. Stimulation of the rat somatosensory cortex at different frequencies and pulse widths. NMR Biomed. 2006;19(1):10-7. http://dx.doi.org/10.1002/nbm.986

Almaguer-Melian W, Bergado JA, López-Rojas J, Frey S, Frey JU. Differential effects of electrical stimulation patterns, motivational-behavioral stimuli and their order of application on functional plasticity processes within one input in the dentate gyrus of freely moving rats in vivo. Neuroscience. 2010;165(4):1546-58. http://dx.doi.org/10.1016/j.neuroscience.2009.11.068

Wu CW, van Gelderen P, Hanakawa T, Yaseen Z, Cohen LG. Enduring representational plasticity after somatosensory stimulation. Neuroimage. 2005;27(4):872-84. http://dx.doi.org/10.1016/j.neuroimage.2005.05.055

Conforto AB, Santos RL, Farias SN, Marie SK, Mangini N, Cohen LG. Effects of somatosensory stimulation on the excitability of the unaffected hemisphere in chronic stroke patients. Clinics (São Paulo). 2008;63(6):735-40. http://dx.doi.org/10.1590/S1807-59322008000600005

Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol. 2002;543(Pt 2):699-708. http://dx.doi.org/10.1113/jphysiol.2002.023317

Castel-Lacanal E, Marque P, Tardy J, de Boissezon X, Guiraud V, Chollet F, et al. Induction of cortical plastic changes in wrist muscles by paired associative stimulation in the recovery phase of stroke patients. Neurorehabil Neural Repair. 2009;23(4):366-72. http://dx.doi.org/10.1177/1545968308322841

Conforto AB, Kaelin-Lang A, Cohen LG. Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann Neurol. 2002;51(1):122-5. http://dx.doi.org/10.1002/ana.10070

Conforto AB, Cohen LG, dos Santos RL, Scaff M, Marie SK. Effects of somatosensory stimulation on motor function in chronic cortico-subcortical strokes. J Neurol. 2007;254(3):333-9. http://dx.doi.org/10.1007/s00415-006-0364-z

Conforto AB, Ferreiro KN, Tomasi C, dos Santos RL, Moreira VL, Marie SK, et al. Effects of somatosensory stimulation on motor function after subacute stroke. Neurorehabil Neural Repair. 2010;24(3):263-72. http://dx.doi.org/10.1177/1545968309349946

Charlton CS, Ridding MC, Thompson PD, Miles TS. Prolonged peripheral nerve stimulation induces persistent changes in excitability of human motor cortex. J Neurol Sci. 2003;208(1-2):79-85. http://dx.doi.org/10.1016/S0022-510X(02)00443-4

Ridding MC, Uy J. Changes in motor cortical excitability induced by paired associative stimulation. Clin Neurophysiol. 2003;114(8):1437-44. http://dx.doi.org/10.1016/S1388-2457(03)00115-9

Smith GV, Alon G, Roys SR, Gullapalli RP. Functional MRI determination of a dose-response relationship to lower extremity neuromuscular electrical stimulation in healthy subjects. Exp Brain Res. 2003;150(1):33-9.

Rosenkranz K, Rothwell JC. Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex. Eur J Neurosci. 2006;23(3):822-9. http://dx.doi.org/10.1111/j.1460-9568.2006.04605.x

Rosenkranz K, Kacar A, Rothwell JC. Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. J Neurosci. 2007;27(44):12058-66. http://dx.doi.org/10.1523/JNEUROSCI.2663-07.2007

Burridge J, Taylor P, Hagan S, Swain I. Experience of clinical use of the Odstock dropped foot stimulator. Artif Organs. 1997;21(3):254-60. http://dx.doi.org/10.1111/j.1525-1594.1997.tb04662.x

Burridge JH, Taylor PN, Hagan SA, Wood DE, Swain ID. The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil. 1997;11(3):201-10. http://dx.doi.org/10.1177/026921559701100303

Ladouceur M, Barbeau H. Functional electrical stimulation-assisted walking for persons with incomplete spinal injuries: longitudinal changes in maximal overground walking speed. Scand J Rehabil Med. 2000;32(1):28-36. http://dx.doi.org/10.1080/003655000750045712

Sinkjaer T, Andersen JB, Ladouceur M, Christensen LO, Nielsen JB. Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J Physiol. 2000;523 Pt 3:817-27. http://dx.doi.org/10.1111/j.1469-7793.2000.00817.x

Popovic MB, Popovic DB, Sinkjaer T, Stefanovic A, Schwirtlich L. Restitution of reaching and grasping promoted by functional electrical therapy. Artif Organs. 2002;26(3):271-5. http://dx.doi.org/10.1046/j.1525-1594.2002.06950.x

Stein RB, Chong S, Everaert DG, Rolf R, Thompson AK, Whittaker M, et al. A multicenter trial of a footdrop stimulator controlled by a tilt sensor. Neurorehabil Neural Repair. 2006;20(3):371-9. http://dx.doi.org/10.1177/1545968306289292

Alon G, Levitt AF, McCarthy PA. Functional electrical stimulation (FES) may modify the poor prognosis of stroke survivors with severe motor loss of the upper extremity: a preliminary study. Am J Phys Med Rehabil. 2008;87(8):627-36. http://dx.doi.org/10.1097/PHM.0b013e31817fabc1

Laufer Y, Hausdorff JM, Ring H. Effects of a foot drop neuroprosthesis on functional abilities, social participation, and gait velocity. Am J Phys Med Rehabil. 2009;88(1):14-20. http://dx.doi.org/10.1097/PHM.0b013e3181911246

Laufer Y, Ring H, Sprecher E, Hausdorff JM. Gait in individuals with chronic hemiparesis: one-year follow-up of the effects of a neuroprosthesis that ameliorates foot drop. J Neurol Phys Ther. 2009;33(2):104-10.

Everaert DG, Thompson AK, Chong SL, Stein RB. Does functional electrical stimulation for foot drop strengthen corticospinal connections? Neurorehabil Neural Repair. 2010;24(2):168-77. http://dx.doi.org/10.1177/1545968309349939

Dupont Salter AC, Richmond FJ, Loeb GE. Prevention of muscle disuse atrophy by low-frequency electrical stimulation in rats. IEEE Trans Neural Syst Rehabil Eng. 2003;11(3):218-26. http://dx.doi.org/10.1109/TNSRE.2003.817674

Marqueste T, Decherchi P, Desplanches D, Favier R, Grelot L, Jammes Y. Chronic electrostimulation after nerve repair by self-anastomosis: effects on the size, the mechanical, histochemical and biochemical muscle properties. Acta Neuropathol. 2006;111(6):589-600. http://dx.doi.org/10.1007/s00401-006-0035-2

Rushton DN. Functional electrical stimulation and rehabilitation: an hypothesis. Med Eng Phys. 2003;25(1):75-8. http://dx.doi.org/10.1016/S1350-4533(02)00040-1

French B, Thomas L, Leathley M, Sutton C, McAdam J, Forster A, et al. Does repetitive task training improve functional activity after stroke? A Cochrane systematic review and meta-analysis. J Rehabil Med. 2010;42(1):9-14. http://dx.doi.org/10.2340/16501977-0473

Hendricks HT, van Limbeek J, Geurts AC, Zwarts MJ. Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil. 2002;83(11):1629-37. http://dx.doi.org/10.1053/pmr.2002.35473

Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci. 2004;22(3-5):281-99.

Teasell R, Bayona NA, Bitensky J. Plasticity and reorganization of the brain post stroke. Top Stroke Rehabil. 2005;12(3):11-26. http://dx.doi.org/10.1310/6AUM-ETYW-Q8XV-8XAC

Teasell R, Bitensky J, Foley N, Bayona NA. Training and stimulation in post stroke recovery brain reorganization. Top Stroke Rehabil. 2005;12(3):37-45. http://dx.doi.org/10.1310/E893-M0PR-NJEJ-1GXM

Lang CE, Macdonald JR, Reisman DS, Boyd L, Jacobson Kimberley T, Schindler-Ivens SM, et al. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90(10):1692-8. http://dx.doi.org/10.1016/j.apmr.2009.04.005

Field-Fote EC. Electrical stimulation modifies spinal and cortical neural circuitry. Exerc Sport Sci Rev. 2004;32(4):155-60. http://dx.doi.org/10.1097/00003677-200410000-00006

Hook MA, Grau JW. An animal model of functional electrical stimulation: evidence that the central nervous system modulates the consequences of training. Spinal Cord. 2007;45(11):702-12. http://dx.doi.org/10.1038/sj.sc.3102096

Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey LL, Lojovich JM, Carey JR. Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Exp Brain Res. 2004;154(4):450-60. http://dx.doi.org/10.1007/s00221-003-1695-y

Han BS, Jang SH, Chang Y, Byun WM, Lim SK, Kang DS. Functional magnetic resonance image finding of cortical activation by neuromuscular electrical stimulation on wrist extensor muscles. Am J Phys Med Rehabil. 2003;82(1):17-20. http://dx.doi.org/10.1097/00002060-200301000-00003

Pitcher JB, Ridding MC, Miles TS. Frequency-dependent, bi-directional plasticity in motor cortex of human adults. Clin Neurophysiol. 2003;114(7):1265-71. http://dx.doi.org/10.1016/S1388-2457(03)00092-0

Kido Thompson A, Stein RB. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles. Exp Brain Res. 2004;159(4):491-500. http://dx.doi.org/10.1007/s00221-004-1972-4

Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M. Modulation of muscleresponses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol. 1995;74(3):1037-45.

Plautz EJ, Milliken GW, Nudo RJ. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem. 2000;74(1):27-55. http://dx.doi.org/10.1006/nlme.1999.3934

Hubbard IJ, Parsons MW, Neilson C, Carey LM. Task-specific training: evidence for and translation to clinical practice. Occup Ther Int. 2009;16(3-4):175-89. http://dx.doi.org/10.1002/oti.275

Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG. Motor learning elicited by voluntary drive. Brain. 2003;126(Pt 4):866-72. http://dx.doi.org/10.1093/brain/awg079

Bayona NA, Bitensky J, Salter K, Teasell R. The role of task-specific training in rehabilitation therapies. Top Stroke Rehabil. 2005;12(3):58-65. http://dx.doi.org/10.1310/BQM5-6YGB-MVJ5-WVCR

Jensen JL, Marstrand PC, Nielsen JB. Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol. 2005;99(4):1558-68. http://dx.doi.org/10.1152/japplphysiol.01408.2004

Urton ML, Kohia M, Davis J, Neill MR. Systematic literature review of treatment interventions for upper extremity hemiparesis following stroke. Occup Ther Int. 2007;14(1):11-27. http://dx.doi.org/10.1002/oti.220

Beekhuizen KS, Field-Fote EC. Sensory stimulation augments the effects of massed practice training in persons with tetraplegia. Arch Phys Med Rehabil. 2008;89(4):602-8. http://dx.doi.org/10.1016/j.apmr.2007.11.021

Chakrabarty S, Friel KM, Martin JH. Activity-dependent plasticity improves M1 motor representation and corticospinal tract connectivity. J Neurophysiol. 2009;101(3):1283-93. http://dx.doi.org/10.1152/jn.91026.2008

Chipchase LS, Schabrun SM, Hodges PW. Peripheral electrical stimulation to induce cortical plasticity: a systematic review of stimulus parameters. Clin Neurophysiol. 2011;122(3):456-63. http://dx.doi.org/10.1016/j.clinph.2010.07.025

Santos M, Zahner LH, McKiernan BJ, Mahnken JD, Quaney B. Neuromuscular electrical stimulation improves severe hand dysfunction for individuals with chronic stroke: a pilot study. J Neurol Phys Ther. 2006;30(4):175-83.

Iftime-Nielsen SD, Christensen MS, Vingborg RJ, Sinkjaer T, Roepstorff A, Grey MJ. Interaction of electrical stimulation and voluntary hand movement in SII and the cerebellum during simulated therapeutic functional electrical stimulation in healthy adults. Hum Brain Mapp. 2012;33(1):40-9. http://dx.doi.org/10.1002/hbm.21191

Morris RG. D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949. Brain Res Bull. 1999;50(5-6):437. http://dx.doi.org/10.1016/S0361-9230(99)00182-3

Hebb DO. The organization of behavior: a neuropsychological theory. New York: Wiley; 1949.

Downloads

Publicado

2012-12-09

Edição

Seção

Artigo de Revisão

Como Citar

1.
A estimulação elétrica funcional (FES) e a plasticidade do sistema nervoso central: revisão histórica. Acta Fisiátr. [Internet]. 9º de dezembro de 2012 [citado 28º de março de 2024];19(4):246-57. Disponível em: https://www.revistas.usp.br/actafisiatrica/article/view/103731