Lesão muscular induzida por eletroestimulação neuromuscular (EENM) com frequências de 30 Hz e 100 Hz

Autores

  • Marina Tessarolo Souza Universidade de Santo Amaro
  • Wladimir Musetti Medeiros Universidade Federal de São Paulo

DOI:

https://doi.org/10.5935/0104-7795.20150005

Palavras-chave:

Estimulação Elétrica, Músculo Esquelético, Creatina Quinase, Lactato Desidrogenases

Resumo

A eletroestimulação-neuromuscular (EENM) é a ação de estímulos elétricos terapêuticos sobre o tecido muscular, visando a contração muscular e consequentemente a melhora dos status muscular. Objetivo: Avaliar a lesão muscular decorrente da contração muscular isométrica induzida por meio da EENM de baixa frequência (30 Hz) e de alta frequência (100 Hz). Métodos: Estudo experimental tipo Cross-over, randomizado e não cego. Participaram do estudo 10 universitários voluntários, gênero masculino, idade de 24,4 ± 6,0 anos, peso de 77,1 ± 11,8 kg, altura de 176,1 ± 5,6 cm e IMC de 24,8 ± 3,4 kg/m2. Dois protocolos (A) e (B) com intervalo de 7 dias entre eles. (A) - 20 minutos de EENM no quadríceps com frequência de 30 Hz. (B) - 20 minutos de EENM com frequência de 100 Hz. Analisado lactato, creatinafosfoquinase e desidrogenase láctica antes, imediatamente após, 6h e 48h após os protocolos. Resultados: Comparando 30 Hz vs. 100 Hz observou-se: lactato (23,7 ± 6,7 vs. 13,4 ± 3,0 mg/dL, p = 0,001); CPK (195,4 ± 116,1 vs. 262,9 ± 153,6 UI, p = 0,022); DHL (374,3 ± 64 vs. 366,6 ± 84,1 UI, ns). A percepção de eficiência contrátil diminuiu significativamente (p = 0,016) no protocolo com 100 Hz. Conclusão: Tanto a EENM de baixa frequência (30 Hz) quanto de alta frequência (100 Hz) elevam os marcadores sanguíneos de lesão muscular, sendo esta elevação, ainda mais acentuada na alta frequência. Entretanto os valores alcançados refletem uma resposta normal para um exercício de moderada intensidade.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Maddocks M, Gao W, Higginson IJ, Wilcock A. Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst Rev. 2013;1:CD009419.

Medeiros WM, Fernandes MC, Azevedo DP, Freitas FF, Amorim BC, Chiavegato LD, et al. Oxygen delivery-utilization mismatch in contracting locomotor muscle in COPD: peripheral factors. Am J Physiol Regul Integr Comp Physiol. 2015;308(2):R105-11. DOI: http://dx.doi.org/10.1152/ajpregu.00404.2014

Selkowitz DM. Improvement in isometric strength of the quadriceps femoris muscle after training with electrical stimulation. Physical therapy. 1985;65(2):186-96.

Nuhr MJ, Pette D, Berger R, Quittan M, Crevenna R, Huelsman M, et al. Beneficial effects of chronic low-frequency stimulation of thigh muscles in patients with advanced chronic heart failure. Eur Heart J. 2004;25(2):136-43. DOI: http://dx.doi.org/10.1016/j.ehj.2003.09.027

Quittan M, Wiesinger GF, Sturm B, Puig S, Mayr W, Sochor A, et al. Improvement of thigh muscles by neuromuscular electrical stimulation in patients with refractory heart failure: a single-blind, randomized, controlled trial. Am J Phys Med Rehabil. 2001;80(3):206-14. DOI: http://dx.doi.org/10.1097/00002060-200103000-00011

Pette D. Fiber transformation and fiber replacement in chronically stimulated muscle. J Heart Lung Transplant. 1992;11(5):S299-305.

Pette D. Fiber transformation and fiber replacement in chronically stimulated muscle. J Heart Lung Transplant. 1992;11(5):S299-305.

Sillen MJ, Franssen FM, Gosker HR, Wouters EF, Spruit MA. Metabolic and structural changes in lower-limb skeletal muscle following neuromuscular electrical stimulation: a systematic review. PLoS One. 2013;8(9):e69391. DOI: http://dx.doi.org/10.1371/journal.pone.0069391

Gorza L, Gundersen K, Lomo T, Schiaffino S, Westgaard RH. Slow-to-fast transformation of denervated soleus muscles by chronic high-frequency stimulation in the rat. J Physiol. 1988;402:627-49. DOI: http://dx.doi.org/10.1113/jphysiol.1988.sp017226

Pette D, Vrbová G. What does chronic electrical stimulation teach us about muscle plasticity? Muscle Nerve. 1999;22(6):666-77.

Zhang SY, Wang FM, Liu G, Wang DL, Guo XJ, Qian GS. Adaptation of myofibrilla, MHC and metabolic enzyme of rabbit diaphragm muscle to different frequency chronic electrical stimulation. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2005;21(4):367-70.

Aldayel A, Jubeau M, McGuigan MR, Nosaka K. Less indication of muscle damage in the second than initial electrical muscle stimulation bout consisting of isometric contractions of the knee extensors. Eur J Appl Physiol. 2010;108(4):709-17. DOI: http://dx.doi.org/10.1007/s00421-009-1278-0

Jubeau M, Sartorio A, Marinone PG, Agosti F, Van Hoecke J, Nosaka K, et al. Comparison between voluntary and stimulated contractions of the quadriceps femoris for growth hormone response and muscle damage. J Appl Physiol (1985). 2008;104(1):75-81. DOI: http://dx.doi.org/10.1152/japplphysiol.00335.2007

Hansen M, Trappe T, Crameri RM, Qvortrup K, Kjaer M, Langberg H. Myofibrillar proteolysis in response to voluntary or electrically stimulated muscle contractions in humans. Scand J Med Sci Sports. 2009;19(1):75-82. DOI: http://dx.doi.org/10.1111/j.1600-0838.2007.00766.x

Aldayel A, Jubeau M, McGuigan M, Nosaka K. Comparison between alternating and pulsed current electrical muscle stimulation for muscle and systemic acute responses. J Appl Physiol (1985). 2010;109(3):735-44. DOI: http://dx.doi.org/10.1152/japplphysiol.00189.2010

Shimojo N, Naka K, Nakajima C, Yoshikawa C, Okuda K, Okada K. Test-strip method for measuring lactate in whole blood. Clin Chem. 1989;35(9):1992-4.

Société Française de Biologie Clinique. Enzymology Commission. Recommendations. Ann Biol Clin (Paris). 1982;40(2):87-164.

Mackey AL, Bojsen-Moller J, Qvortrup K, Langberg H, Suetta C, Kalliokoski KK, et al. Evidence of skeletal muscle damage following electrically stimulated isometric muscle contractions in humans. J Appl Physiol (1985). 2008;105(5):1620-7. DOI: http://dx.doi.org/10.1152/japplphysiol.90952.2008

Lavender AP, Nosaka K. A light load eccentric exercise confers protection against a subsequent bout of more demanding eccentric exercise. J Sci Med Sport. 2008;11(3):291-8. DOI: http://dx.doi.org/10.1016/j.jsams.2007.03.005

Jubeau M, Muthalib M, Millet GY, Maffiuletti NA, Nosaka K. Comparison in muscle damage between maximal voluntary and electrically evoked isometric contractions of the elbow flexors. Eur J Appl Physiol. 2012;112(2):429-38. DOI: http://dx.doi.org/10.1007/s00421-011-1991-3

Warren GL, Lowe DA, Armstrong RB. Measurement tools used in the study of eccentric contraction-induced injury. Sports Med. 1999;27(1):43-59. DOI: http://dx.doi.org/10.2165/00007256-199927010-00004

Vincent HK, Vincent KR. The effect of training status on the serum creatine kinase response, soreness and muscle function following resistance exercise. Int J Sports Med. 1997;18(6):431-7.

Kobayashi Y, Takeuchi T, Hosoi T, Yoshizaki H, Loeppky JA. Effect of a marathon run on serum lipoproteins, creatine kinase, and lactate dehydrogenase in recreational runners. Res Q Exerc Sport. 2005;76(4):450-5. DOI: http://dx.doi.org/10.1080/02701367.2005.10599318

Gregory CM, Dixon W, Bickel CS. Impact of varying pulse frequency and duration on muscle torque production and fatigue. Muscle Nerve. 2007;35(4):504-9. DOI: http://dx.doi.org/10.1002/mus.20710

Cabric M, Appell HJ, Resic A. Fine structural changes in electrostimulated human skeletal muscle. Evidence for predominant effects on fast muscle fibres. Eur J Appl Physiol Occup Physiol. 1988;57(1):1-5. DOI: http://dx.doi.org/10.1007/BF00691229

Trimble MH, Enoka RM. Mechanisms underlying the training effects associated with neuromuscular electrical stimulation. Phys Ther. 1991;71(4):273-80.

Friden J, Lieber RL. Structural and mechanical basis of exercise-induced muscle injury. Med Sci Sports Exerc. 1992;24(5):521-30. DOI: http://dx.doi.org/10.1249/00005768-199205000-00005

Bickel CS, Gregory CM, Dean JC. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol. 2011;111(10):2399-407. DOI: http://dx.doi.org/10.1007/s00421-011-2128-4

Sillen MJ, Wouters EF, Franssen FM, Meijer K, Stakenborg KH, Spruit MA. Oxygen uptake, ventilation, and symptoms during low-frequency versus high-frequency NMES in COPD: a pilot study. Lung. 2011;189(1):21-6. DOI: http://dx.doi.org/10.1007/s00408-010-9265-0

Angelopoulos E, Karatzanos E, Dimopoulos S, Mitsiou G, Stefanou C, Patsaki I, et al. Acute microcirculatory effects of medium frequency versus high frequency neuromuscular electrical stimulation in critically ill patients - a pilot study. Ann Intensive Care. 2013;3(1):39. DOI: http://dx.doi.org/10.1186/2110-5820-3-39

Kesar T, Binder-Macleod S. Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation. Exp Physiol. 2006;91(6):967-76. DOI: http://dx.doi.org/10.1113/expphysiol.2006.033886

Publicado

2015-03-09

Edição

Seção

Artigo Original

Como Citar

1.
Souza MT, Medeiros WM. Lesão muscular induzida por eletroestimulação neuromuscular (EENM) com frequências de 30 Hz e 100 Hz. Acta Fisiátr. [Internet]. 9º de março de 2015 [citado 19º de abril de 2024];22(1):19-23. Disponível em: https://www.revistas.usp.br/actafisiatrica/article/view/103896