Associação entre velocidade de marcha e força de membros inferiores após acidente vascular encefálico crônico

Autores

  • Brenno Belchior Cordeiro Silva Faculdade Ciências Médicas de Minas Gerais – FCMMG
  • Iza de Faria-Fortini Faculdade Ciências Médicas de Minas Gerais – FCMMG
  • Pollyana Helena Vieira Costa Faculdade Ciências Médicas de Minas Gerais – FCMMG
  • Camila Torriani-Pasin Universidade de Sao Paulo – USP
  • Janaine Cunha Polese Faculdade Ciências Médicas de Minas Gerais – FCMMG https://orcid.org/0000-0003-3366-1545

DOI:

https://doi.org/10.11606/issn.2317-0190.v27i3a171118

Palavras-chave:

Acidente Vascular Cerebral, Força Muscular, Marcha, Velocidade de Caminhada

Resumo

Estudos que investigam a associação entre a força média de membro inferior e a velocidade de marcha em indivíduos pós AVE são escassos. Logo, é importante determinar se a força muscular média pode explicar o desempenho na marcha, visto que os músculos agem em grupo. Objetivo: Investigar a associação entre velocidade de marcha e força muscular de membros inferiores, e identificar se um grupo muscular individual ou a força média de membros inferiores poderia predizer a velocidade de marcha e a velocidade de reserva (VR) em indivíduos pós AVE crônico. Métodos: 64 indivíduos deambuladores comunitários pós AVE crônico passaram por avaliação de força isométrica máxima (flexor/extensor/abdutor de quadril, flexor/extensor de joelho e flexor plantar/dorsoflexor de tornozelo) e velocidade de marcha habitual e máxima (Teste de Caminhada de 10 metros). A VR foi considerada a diferença entre velocidade de marcha máxima e habitual. Resultados: A força média do lado parético foi responsável por 19% e 20% da variância na velocidade de marcha habitual e máxima respectivamente. A força de flexor plantar do lado parético e flexor de quadril e joelho do lado não parético explicaram 27% da VR e força de flexor plantar do lado parético explicou 15%.  Conclusão: A força média do lado parético contribuiu para a velocidade de marcha habitual e máxima. a força de flexor plantar do lado parético, flexor de quadril e joelho do lado não parético contribuíram para a VR de indivíduos pós AVE crônico.

Downloads

Não há dados estatísticos.

Referências

Aguiar LT, Camargo LBA, Estarlino LD, Teixeira-Salmela LF, Faria CDCM. Strength of the lower limb and trunk muscles is associated with gait speed in individuals with sub-acute stroke: a cross-sectional study. Braz J Phys Ther. 2018;22(6):459-66. Doi: https://doi.org/10.1016/j.bjpt.2018.03.001

Teixeira-Salmela LF, Olney SJ, Nadeau S, Brouwer B. Muscle strengthening and physical conditioning to reduce impairment and disability in chronic stroke survivors. Arch Phys Med Rehabil. 1999;80(10):1211-8. Doi: https://doi.org/10.1016/s0003-9993(99)90018-7

Flansbjer UB, Downham D, Lexell J. Knee muscle strength, gait performance, and perceived participation after stroke. Arch Phys Med Rehabil. 2006;87(7):974-80. Doi: https://doi.org/10.1016/j.apmr.2006.03.008

Dorsch S, Ada L, Canning CG, Al-Zharani M, Dean C. The strength of the ankle dorsiflexors has a significant contribution to walking speed in people who can walk independently after stroke: an observational study. Arch Phys Med Rehabil. 2012;93(6):1072-6. Doi: https://doi.org/10.1016/j.apmr.2012.01.005

Middleton A, Fritz SL, Lusardi M. Walking speed: the functional vital sign. J Aging Phys Act. 2015;23(2):314–22. Doi: https://doi.org/10.1123/japa.2013-0236

Lusardi MM. Using walking speed in clinical practice: interpreting age-, gender-, and function-specific norms. Top Geriatr Rehabil. 2012;28(2):77-90. Doi: https://doi.org/10.1097/TGR.0b013e31823d7b9

Faria-Fortini I, Basílio ML, Polese JC, Menezes KKP, Faria CDCM, Scianni AA, et al. Caracterização da participação social de indivíduos na fase crônica pós-acidente vascular encefálico. Rev Ter Ocup Univ São Paulo. 2017;28(1):71-8. Doi: https://doi.org/10.11606/issn.2238-6149.v28i1p71-78

Faria-Fortini I, Basílio ML, Polese JC, Menezes KKP, Faria CDCM, Scianni AA, et al. Strength deficits of the paretic lower extremity muscles were the impairment variables that best explained restrictions in participation after stroke. Disabil Rehabil. 2017;39(21):2158-63. Doi: https://doi.org/10.1080/09638288.2016.1219397

Lord SE, Rochester L. Measurement of community ambulation after stroke: current status and future developments. Stroke. 2005;36(7):1457-61. Doi: https://doi.org/10.1161/01.STR.0000170698.20376.2e

Lauzière S, Miéville C, Betschart M, Aissaoui R, Nadeau S. Plantarflexor weakness is a determinant of kinetic asymmetry during gait in post-stroke individuals walking with high levels of effort. Clin Biomech (Bristol, Avon). 2015;30(9):946-52. Doi: https://doi.org/10.1016/j.clinbiomech.2015.07.004

Nadeau S, Gravel D, Arsenault AB, Bourbonnais D. Plantarflexor weakness as a limiting factor of gait speed in stroke subjects and the compensating role of hip flexors. Clin Biomech (Bristol, Avon). 1999;14(2):125-35. Doi: https://doi.org/10.1016/S0268-0033(98)00062-X

Mentiplay BF, Adair B, Bower KJ, Williams G, Tole G, Clark RA. Associations between lower limb strength and gait velocity following stroke: A systematic review. Brain Inj. 2015;29(4):409-22. Doi: https://doi.org/10.3109/02699052.2014.995231

Bohannon RW. Strength of lower limb related to gait velocity and cadence in stroke patients. Physiother Can. 1986;38(4):204-6. Doi: https://doi.org/10.3138/ptc.38.4.204

Nakamura R, Watanabe S, Handa T, Morohashi I. The relationship between walking speed and muscle strength for knee extension in hemiparetic stroke patients: a follow-up study. Tohoku J Exp Med. 1988;154(2):111-3. Doi: https://doi.org/10.1620/tjem.154.111

Lindmark B, Hamrin E. Relation between gait speed, knee muscle torque and motor scores in post‐stroke patients. Scand J Caring Sci. 1995;9(4):195-202. Doi: https://doi.org/10.1111/j.1471-6712.1995.tb00414.x

Bohannon RW. Gait performance of hemiparetic stroke patients: selected variables. Arch Phys Med Rehabil. 1987;68(11):777-81.

Bohannon RW. Muscle strength and muscle training after stroke. J Rehabil Med. 2007;39(1):14-20. Doi: https://doi.org/10.2340/16501977-0018

Middleton A, Braun CH, Lewek MD, Fritz SL. Balance impairment limits ability to increase walking speed in individuals with chronic stroke. Disabil Rehabil. 2017;39(5):497-502. Doi: https://doi.org/10.3109/09638288.2016.1152603

Bernhardt J, Hayward KS, Kwakkel G, Ward NS, Wolf SL, Borschmann K, et al. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Int J Stroke. 2017;12(5):444-50. Doi: https://doi.org/10.1177/1747493017711816

Bertolucci PH, Brucki SMD, Campacci SR, Juliano Y. O mini-exame do estado mental em uma população geral: impacto da escolaridade. Arq Neuropsiquiatr. 1994;52(1):1-7. Doi: https://doi.org/10.1590/S0004-282X1994000100001

Salbach NM, Mayo NE, Higgins J, Ahmed S, Finch LE, Richards CL. Responsiveness and predictability of gait speed and other disability measures in acute stroke. Arch Phys Med Rehabil. 2001;82(9):1204-12. Doi: https://doi.org/10.1053/apmr.2001.24907

Faria CD, Teixeira-Salmela LF, Neto MG, Rodrigues-de-Paula F. Performance-based tests in subjects with stroke: outcome scores, reliability and measurement errors. Clin Rehabil. 2012;26(5):460-9. Doi: https://doi.org/10.1177/0269215511423849

Nascimento LR, Caetano LC, Freitas DC, Morais TM, Polese JC, Teixeira-Salmela LF. Different instructions during the ten-meter walking test determined significant increases in maximum gait speed in individuals with chronic hemiparesis. Rev Bras Fisioter. 2012;16(2):122-7. Doi: https://doi.org/10.1590/S1413-35552012005000008

Flansbjer UB, Holmbäck AM, Downham D, Patten C, Lexell J. Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabil Med. 2005;37(2):75-82. Doi: https://doi.org/10.1080/16501970410017215

Souza LA, Martins JC, Teixeira-Salmela LF, Lara EM, Moura JB, Aguiar LT, et al. Validity and reliability of the modified sphygmomanometer test to assess strength of the lower limbs and trunk muscles after stroke. J Rehabil Med. 2014;46(7):620-8. Doi: https://doi.org/10.2340/16501977-1823

Aguiar LT, Martins JC, Brito SAF, Mendes CLG, Teixeira-Salmela LF, Faria CDCDM. Knee extensor muscles strength indicates global lower-limb strength in individuals who have suffered a stroke: a cross-sectional study. Braz J Phys Ther. 2019;23(3):221-7. Doi: https://doi.org/10.1016/j.bjpt.2018.08.001

Castro LA, Martins JC, Teixeira-Salmela LF, Godoy MR, Aguiar LT, Faria CDCM. Avaliação da força muscular pelo teste do esfigmomanômetro modificado: uma revisão da literatura. Fisioter Mov. 2017;26(2):437-52. Doi: https://doi.org/10.1590/S0103-51502013000200021

Audigé L. Veterinary epidemiologic research: I. Dohoo, W. Martin, H. Stryhn, Atlantic Veterinary College, Charlottetown, PE, Canada, 2003. Prev Vet Med. 2005;68(2–4):289-92. Doi: https://doi.org/10.1016/j.prevetmed.2004.11.001

Munro BH. Statistical methods for health care research. 6th ed. New York: Lippincott Williams & Wilkins; 2005.

Draper NR, Smith H. Applied regression analysis. 3rd ed. New York: Wiley; 1998.

Montgomery DC, Peck EA. Introduction to linear regression analysis. 2nd ed. New York: J. Wiley; 1992.

Portney LG, Watkins MP. Foundations of clinical research: applications to practice. 3rd ed. Upper Saddle River: Prentice-Hall; 2009.

Teixeira-Salmela LF, Lima RCM, Lima LAO, Morais SG, Goulart F. Assimetria e desempenho funcional em hemiplégicos crônicos antes e após programa de treinamento em academia. Rev Bras Fisioter. 2005;9(2):227-33.

Khanittanuphong P, Tipchatyotin S. Correlation of the gait speed with the quality of life and the quality of life classified according to speed-based community ambulation in Thai stroke survivors. NeuroRehabilitation. 2017;41(1):135-41. Doi: https://doi.org/10.3233/NRE-171465

Faria-Fortini I, Basílio ML, Scianni AA, Faria CDCM, Teixeira-Salmela LF. Performance and capacity-based measures of locomotion, compared to impairment-based measures, best predicted participation in individuals with hemiparesis due to stroke. Disabil Rehabil. 2018;40(15):1791-8. Doi: https://doi.org/10.1080/09638288.2017.1312570

Grau-Pellicer M, Chamarro-Lusar A, Medina-Casanovas J, Serdà Ferrer BC. Walking speed as a predictor of community mobility and quality of life after stroke. Top Stroke Rehabil. 2019;26(5):349‐58. Doi: https://doi.org/10.1080/10749357.2019.1605751

Kwan MS, Hassett LM, Ada L, Canning CG. Relationship between lower limb coordination and walking speed after stroke: an observational study. Braz J Phys Ther. 2019;23(6): 527‐31. Doi: https://doi.org/10.1016/j.bjpt.2018.10.006

Madhavan S, Bishnoi A. Comparison of the mini-balance evaluations systems test with the berg balance scale in relationship to walking speed and motor recovery post stroke. Top Stroke Rehabil. 2017;24(8):579‐84. Doi: https://doi.org/10.1080/10749357.2017.1366097

Jones TA. Motor compensation and its effects on neural reorganization after stroke. Nat Rev Neurosci. 2017;18(5):267-80. Doi: https://doi.org/10.1038/nrn.2017.26

Levin MF, Kleim JA, Wolf SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2009;23(4):313-9. Doi: https://doi.org/10.1177/1545968308328727

Polese JC, Teixeira-Salmela LF, Nascimento LR, Faria CD, Kirkwood RN, Laurentino GC, et al. The effects of walking sticks on gait kinematics and kinetics with chronic stroke survivors. Clin Biomech (Bristol, Avon). 2012;27(2):131-7. Doi: https://doi.org/10.1016/j.clinbiomech.2011.08.003

Teixeira-Salmela LF, Nadeau S, Mcbride I, Olney SJ. Effects of muscle strengthening and physical conditioning training on temporal, kinematic and kinetic variables during gait in chronic stroke survivors. J Rehabil Med. 2001;33(2):53-60. Doi: https://doi.org/10.1080/165019701750098867

Winter DA. The biomechanics and motor control of human gait: normal, elderly and pathological. 2nd ed. Wateloo: Waterloo Biomechanics; 1991.

Ng SS, Au KK, Chan EL, Chan DO, Keung GM, Lee JK, et al. Effect of acceleration and deceleration distance on walking speed of people with chronic stroke. J Rehabil Med. 2016;48(8):666-70. Doi: https://doi.org/10.2340/16501977-2124

Dobkin BH. Short-distance walking speed and timed walking distance: redundant measures for clinical trials? Neurology. 2006;66(4):584-6. Doi: https://doi.org/10.1212/01.wnl.0000198502.88147.dd

Lin PY, Yang YR, Cheng SJ, Wang RY. The relation between ankle impairments and gait velocity and symmetry in people with stroke. Arch Phys Med Rehabil. 2006;87(4):562-8. Doi: https://doi.org/10.1016/j.apmr.2005.12.042

Mentiplay BF, Williams G, Tan D, Adair B, Pua YH, Bok CW, et al. Gait Velocity and joint power generation after stroke: contribution of strength and balance. Am J Phys Med Rehabil. 2019;98(10):841-9. Doi: https://doi.org/10.1097/PHM.0000000000001122

Nasciutti-Prudente C, Oliveira FG, Houri SF, de Paula Goulart FR, Neto MH, Teixeira-Salmela LF. Relationships between muscular torque and gait speed in chronic hemiparetic subjects. Disabil Rehabil. 2009;31(2):103-8. Doi: https://doi.org/10.1080/09638280701818055

Downloads

Publicado

2020-06-30

Edição

Seção

Artigo Original
MÉTRICAS | METRICS