Estudo de validação de um programa de computador para avaliação proprioceptiva

Autores

  • Henrique Franco Ferreira Universidade Federal de Alfenas - UNIFAL
  • Leonardo César Carvalho Universidade Federal de Alfenas - UNIFAL
  • Paulo Alexandre Bressan Universidade Federal de Alfenas - UNIFAL
  • Renato Aparecido de Souza Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas - IFSULDEMINAS
  • Adriano Prado Simão Universidade Federal de Alfenas - UNIFAL
  • Denise Hollanda Iunes Universidade Federal de Alfenas - UNIFAL

DOI:

https://doi.org/10.11606/issn.2317-0190.v28i1a181737

Palavras-chave:

Articulação do Ombro, Propriocepção, Software, Reabilitação

Resumo

Objetivo: Validar do software PhisioPlay para avaliação proprioceptiva da articulação do ombro realizando movimento de abdução a 45º e 90º utilizando os dados obtidos por um equipamento de dinamometria isocinética. Métodos: Trinta e um indivíduos compuseram um único grupo de avaliação da propriocepção pelo senso de posição articular (SPA) do ombro. O protocolo de teste no PhisioPlay consistiu no movimento de abdução do ombro para o ângulo alvo de 45° e 90° e sua manutenção por 30 segundos. No dinamômetro isocinético o teste foi realizado utilizando seu protocolo de avaliação proprioceptiva para o mesmo movimento, ângulos alvo e tempo de manutenção no ângulo alvo estabelecidos para o teste anterior. Resultados: Para as variáveis de 90° foi observada concordância moderada para o membro dominante em relação à angulação média e à diferença absoluta, e para o membro não dominante em relação à diferença absoluta. O teste de Wilcoxon ao comparar os valores dos erros absolutos em relação ao ângulo alvo obtidos pelo PhisioPlay corroboram com a literatura sobre o comportamento do SPA observando amplitude articular, lateralidade e maior ou menor torque incidindo sobre a articulação. Medidas de confiabilidade e sensibilidade também reforçaram este comportamento. Conclusão: Os resultados apontam para validade de construto do software PhisioPlay para a avaliação do SPA da articulação do ombro a 45° e 90° e sugerem que o SPA é mais influenciado pela angulação da articulação durante a tarefa motora do que pela dominância lateral.

Downloads

Não há dados estatísticos.

Referências

Riemann BL, Lephart SM. The sensorimotor system, part I: the physiologic basis of functional joint stability. J Athl Train. 2002;37(1):71-9.

Stillman Stillman BC. Making sense of proprioception: the meaning of proprioception, kinaesthesia and related terms. Physiother. 2002;88(11):667-76. Doi: https://doi.org/10.1016/S0031-9406(05)60109-5

Proske U. The role of muscle proprioceptors in human limb position sense: a hypothesis. J Anat. 2015;227(2):178-83. Doi: https://doi.org/10.1111/joa.12289

Goble DJ. Proprioceptive Acuity assessment via joint position matching: from basic science to general practice. Phys Ther. 2010;90(8):1176-84. Doi: http://dx.doi.org/10.2522/ptj.20090399

Han J, Waddington G, Adams R, Anson J, Liu Y. Assessing proprioception: a critical review of methods. J Sport Heal Sci. 2016;5(1):80-90. Doi: http://dx.doi.org/10.1016/j.jshs.2014.10.004

Ager AL, Roy JS, Roos M, Belley AF, Cools A, Hébert LJ. Shoulder proprioception: how is it measured and is it reliable? A systematic review. J Hand Ther. 2017;30(2):221–31. Doi: http://dx.doi.org/10.1016/j.jht.2017.05.003

Clark NC, Röijezon U, Treleaven J. Proprioception in musculoskeletal rehabilitation. Part 2: clinical assessment and intervention. Man Ther. 2015;20(3):378–87. Doi: http://dx.doi.org/10.1016/j.math.2015.01.009

Hillier S, Immink M, Thewlis D. Assessing proprioception: a systematic review of possibilities. Neurorehabil Neural Repair. 2015;29(10):933-49. Doi: http://dx.doi.org/10.1177/1545968315573055

Matsen FA, Lauder A, Rector K, Keeling P, Cherones AL. Measurement of active shoulder motion using the Kinect, a commercially available infrared position detection system. J Shoulder Elb Surg. 2016;25(2):216-23. Doi: http://dx.doi.org/10.1016/j.jse.2015.07.011

Saalfeld B, Pingel I, Wolf KH. Semi-Automatically Measuring Shoulders' Range of Motion - objective measurements with good reliability and accuracy. Stud Health Technol Inform. 2018;247:631-635. Doi: http://dx.doi.org/10.3233/978-1-61499-852-5-631

Soares JV, Carvalho LC, Bressan PA. PhysioPlay: um exergame para reabilitação física aplicando a interatividade do Kinect como biofeedback visual [Monografia]. Alfenas: Universidade Federal de Alfenas; 2012.

Oliveira RF, Carvalho LC, Bressan PA. Shoulderforce: um exergame para reabilitação física aplicando a interatividade do Kinect como biofeedback visual[Monografia]. Alfenas: Universidade Federal de Alfenas; 2015.

Marin LF, Bressan PA, Carvalho LC. PhysioPlay: um software para avaliação da amplitude de movimento e treinamento[Monografia]. Alfenas: Universidade Federal de Alfenas; 2017.

Edouard P, Gasq D, Calmels P, Degache F. Sensorimotor control deficiency in recurrent anterior shoulder instability assessed with a stabilometric force platform. J Shoulder Elb Surg. 2014;23(3):355-60. Doi: https://dx.doi.org/10.1016/j.jse.2013.06.005

Fortier S, Basset FA. The effects of exercise on limb proprioceptive signals. J Electromyogr Kinesiol. 2012;22(6):795-802. Doi: https://dx.doi.org/10.1016/j.jelekin.2012.04.001

Echalier C, Uhring J, Ritter J, Rey PB, Jardin E, Rochet S, et al. Variability of shoulder girdle proprioception in 44 healthy volunteers. Orthop Traumatol Surg Res. 2019;105(5):825–9. Doi: https://dx.doi.org/10.1016/j.otsr.2019.01.019

Findlater SE, Hawe RL, Semrau JA, Kenzie JM, Yu AY, Scott SH, et al. Lesion locations associated with persistent proprioceptive impairment in the upper limbs after stroke. NeuroImage Clin. 2018;20(August):955-71. Doi: https://dx.doi.org/10.1016/j.nicl.2018.10.003

Matsudo S, Araújo T, Matsudo V, Andrade D, Andrade E, Oliveira LC, et al. Questionário Internacional de Atividade Física (IPAQ): estupo de validade e reprodutibilidade no Brasil. Rev Bras Ativ Fis Saúde. 2001;6(2):5-18. Doi: https://dx.doi.org/10.12820/rbafs.v.6n2p5-18

Martins J, Napoles BV, Hoffman CB, Oliveira AS. Versão brasileira do Shoulder Pain and Disability Index: tradução, adaptação cultural e confiabilidade. Rev Bras Fisioter. 2010;14(6):527-36. Doi: http://dx.doi.org/10.1590/S1413-35552010000600012

Terwee CB, Bot SDM, de Boer MR, van der Windt DAWM, Knol DL, Dekker J, et al. Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol. 2007;60(1):34-42. Doi: https://dx.doi.org/10.1016/j.jclinepi.2006.03.012

Field A. Descobrindo a estatística usando o SPSS. 2 ed. Porto Alegre: Artmed; 2009.

Hopkins WG. Measures of reliability in sports medicine and science. Sport Med. 2000;30(1):1–15. Doi: https://dx.doi.org/10.2165/00007256-200030010-00001

Beckerman H, Roebroeck ME, Lankhorst GJ, Becher JG, Bezemer PD, Verbeek AL. Smallest real difference, a link between reproducibility and responsiveness. Qual Life Res. 2001;10(7):571-8. Doi: https://dx.doi.org/10.1023/a:1013138911638

Vafadar AK, Côté JN, Archambault PS. Interrater and intrarater reliability and validity of 3 measurement methods for shoulder-position sense. J Sport Rehabil.; 2016;25(1):2014-0309. Doi: https://dx.doi.org/10.1123/jsr.2014-0309

Deng HR, Shih YF. Test validity and intra-rater reliability in the measurement of scapular position sense in asymptomatic young adults. Man Ther. 2015;20(3):503-7. Doi: https://dx.doi.org/10.1016/j.math.2015.02.002

Suprak DN, Sahlberg JD, Chalmers GR, Cunningham W. Shoulder elevation affects joint position sense and muscle activation differently in upright and supine body orientations. Hum Mov Sci. 2016;46:148-58. Doi: https://dx.doi.org/10.1016/j.humov.2016.01.008

Diefenbach BJ, Lipps DB. Quantifying the three-dimensional joint position sense of the shoulder. Hum Mov Sci. 2019;67:102508. Doi: https://dx.doi.org/10.1016/j.humov.2019.102508

Safran MR, Borsa PA, Lephart SM, Fu FH, Warner JJ. Shoulder proprioception in baseball pitchers. J Shoulder Elbow Surg. 2001;10(5):438-44. Doi: https://dx.doi.org/10.1067/mse.2001.118004

Suprak DN. Shoulder joint position sense is not enhanced at end range in an unconstrained task. Hum Mov Sci. 2011;30(3):424-35. Doi: https://dx.doi.org/10.1016/j.humov.2011.02.003

Hess SA. Functional stability of the glenohumeral joint. Man Ther. 2000;5(2):63-71. Doi: https://dx.doi.org/10.1054/math.2000.0241

Yanagawa T, Goodwin CJ, Shelburne KB, Giphart JE, Torry MR, Pandy MG. Contributions of the individual muscles of the shoulder to glenohumeral joint stability during abduction. J Biomech Eng. 2008;130(2):021024. Doi: https://dx.doi.org/10.1115/1.2903422

Hurov J. Anatomy and mechanics of the shoulder: review of current concepts. J Hand Ther. 2009;22(4):328-43. Doi: https://dx.doi.org/10.1016/j.jht.2009.05.002

Vafadar AK, Côté JN, Archambault PS. Sex differences in the shoulder joint position sense acuity: a cross-sectional study. BMC Musculoskelet Disord. 2015;16:273. Doi: https://dx.doi.org/0.1186/s12891-015-0731-y

Proske U, Allen T. The neural basis of the senses of effort, force and heaviness. Exp Brain Res. 2019;237(3):589-99. Doi: https://dx.doi.org/10.1007/s00221-018-5460-7

Gandevia SC. Proprioception, tensegrity, and motor control. J Mot Behav. 2014;46(3):199-201. Doi: https://dx.doi.org/10.1080/00222895.2014.883807

Downloads

Publicado

2021-03-31

Edição

Seção

Artigo Original

Dados de financiamento

MÉTRICAS | METRICS