Existe correlação entre atividade elétrica muscular e cerebral após treino com terapia de contensão do membro superior e tronco em sujeitos com acidente vascular encefálico?

Autores

DOI:

https://doi.org/10.11606/issn.2317-0190.v29i4a168691

Palavras-chave:

Acidente Vascular Encefálico, Eletromiografia, Eletroencefalografia, Modalidades de Fisioterapia, Reabilitação

Resumo

Objetivo: Verificar se existe correlação entre excitabilidade central e periférica após o treino com a terapia de restrição induzida do movimento (TRIM) modificada associada a contensão de tronco para o membro superior parético após Acidente Vascular Encefálico (AVE). Métodos: Ensaio clínico controlado onde vinte e dois voluntários foram selecionados e randomizado em dois grupos: Grupo Controle (GC) e Grupo Experimental (GE). Eles foram avaliados por meio do eletroencefalograma (EEG) e da eletromiografia (EMG) de superfície. Os canais EEG analisados foram: Canal Ântero Frontal (AF3/AF4); Canal Frontal região medial (F7/F8); Canal Frontal região lateral (F3/F4); Canal Fronto Central (FC5/FC6); Região temporal (T7/T8); Região occipital (O1/O2). Os músculos analisados com EMG foram bíceps braquial, flexores e extensores de punho. As avaliações foram realizada durante a atividade, por dez minutos. O GE recebeu o treinamento com TRIM modificada uma hora por dia, duas semanas consecutivas. Resultados: O GC (pós-intervenção) apresentou correlação moderada negativa (r= -0,69; p= 0,02) do canal Fa com extensor de punho. O GE apresentou (pré-intervenção) correlação moderada negativa do canal AF (r= -0,68; p= 0,02) e FC (r= -0,71; p= 0,01) com flexor de punho. Na pós intervenção apresentou correlação positiva do canal Fa (r= 0,61; p= 0,04) com o extensor de punho. Conclusão: A TRIM modificada associada à contensão de tronco para o membro superior parético apresentou correlação positiva do canal Fa com o músculo extensor de punho e o grupo não treinado apresentou correlação negativa do canal Fa com extensor de punho.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Li S. Spasticity, motor recovery, and neural plasticity after stroke. Front Neurol. 2017;8:120. Doi: https://doi.org/10.3389/fneur.2017.00120

Go AS, Mozaffarian D, Roger VL, Bejamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics – 2014 update: a report from the American Heart Association. Circulation 2014;129(3):e28-e292. Doi: https://doi.org/10.1161/01.cir.0000441139.02102.80

Jones TA. Motor compensation and its effects on neural reorganization after stroke. Nat Rev Neurosci. 2017;18(5):267-80. Doi: https://doi.org/10.1038/nrn.2017.26

Taub E, Uswatte G, Mark VW. The functional significance of cortical reorganization and the parallel development of CI therapy. Front Hum Neurosci. 2014;8:396. Doi: https://doi:10.3389/fnhum.2014.00396

Cramer SC. Treatments to promote neural repair after stroke. J Stroke 2018;20(1):57-70. Doi: https://doi.org/10.5853/jos.2017.02796

Kwakkel G, Veerbeek JM, van Wegen EE, Wolf SL. Constraint-induced movement therapy after stroke. Lancet Neurol. 2015;14(2):224-34. Doi: https://doi.org/10.1016/S1474-4422(14)70160-7

Greisberger A, Aviv H, Garbade SF, Diermayr G. Clinical relevance of the effects of reach-to-grasp training using trunk restraint in individuals with hemiparesis poststroke: A systematic review. J Rehabil Med. 2016;48(5):405-16. Doi: https://doi.org/10.2340/16501977-2077

Bang DH, Shin WS, Choi HS. Effects of modified constraint-induced movement therapy combined with trunk restraint in chronic stroke: a double-blinded randomized controlled pilot trial. NeuroRehabilitation. 2015;37(1):131-7. Doi: https://doi.org/10.3233/NRE-151245

Loubinoux I, Brihmat N, Castel-Lacanal E, Marque P. Cerebral imaging of post-stroke plasticity and tissue repair. Revue Neurologique. 2017;173(9):577-583. Doi: https://doi.org/10.1016/j.neurol.2017.09.007

Nuwer M. Assessment of digital EEG, quantitative EEG, and EEG brain mapping: report of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology. 1997;49(1):277-92. Doi: https://doi.org/10.1212/wnl.49.1.277

Bastos VH, Cunha M, Veiga H, McDowell K, Pompeu F, Cagy M, et al. Análise da distribuição de potência cortical em função do aprendizado de datilografia. Rev Bras Med Esporte. 2004;10(6):494-9. Doi: https://doi.org/10.1590/S1517-86922004000600006

Kiefer AW, Gualberto Cremades J, Myer GD. Train the brain: novel electroencephalography data indicate links between motor learning and brain adaptations. J Nov Physiother. 2014;4(2):198. Doi: https://doi.org/10.4172/2165-7025.1000198

Medved V. Cifrek M. Kinesiological electromyography. In: Klika V. Biomechanics in applications. London: IntechOpen; 2011. Doi: https://doi.org/10.5772/21282

Kouzi I, Trachani E, Anagnostou E, Rapidi CA, Ellul J, Sakellaropoulos GC, et al. Motor unit number estimation and quantitative needle electromyography in stroke patients. J Electromyogr Kinesiol. 2014;24(6):910-6. Doi: https://doi.org/10.1016/j.jelekin.2014.09.006

Hu XL, Tong KY, Wei XJ, Rong W, Susanto EA, Ho SK. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot. J Electromyogr Kinesiol. 2013;23(5):1065-74. Doi: https://doi.org/10.1016/j.jelekin.2013.07.007

Folstein MF, Folstein SE, Mchugh PR. Mini Mental State. A practical method for grading the cognitive state of patients for the clinician. J Psychiat Res. 1975;12:189-98. Doi: https://doi.org/10.1016/0022-3956(75)90026-6

Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13-31.

Biering-Sorense F, Nielsen J B, Klinge K. Spasticity-assessment: a review. Spinal Cord. 2006;44(12):708-22. Doi: https://doi.org/10.1038/sj.sc.3101928

Kasner SE. Clinical interpretation and use of stroke scales. Lancet Neurol. 2006;5(7):603-12. Doi: https://doi.org/10.1016/S1474-4422(06)70495-1

European Recommendations for Surface Electromyography [text on the Internet]. Enschede: SENIAM [cited 2018 Jan 26]. Available from: http://www.seniam.org/

Duvinage M, Castermans T, Petieau M, Hoellinger T, Cheron G, Dutoit T. Performance of the Emotiv Epoc headset for P300-based applications. Biomed Eng Online. 2013;12:56. Doi: https://doi.org/10.1186/1475-925X-12-56

Badcock NA, Mousikou P, Mahajan Y, Lissa P, Thie J, McArthur G. Validation of the Emotiv EPOC(®) EEG gaming system for measuring research quality auditory ERPs. PeerJ. 2013;1:e38. Doi: https://doi.org/10.7717/peerj.38

Pacheco TBF, Oliveira Rego IA, Campos TF, Cavalcanti FADC. Brain activity during a lower limb functional task in a real and virtual environment: A comparative study. NeuroRehabilitation. 2017;40(3):391-400. Doi: https://doi.org/10.3233/NRE-161426

Koessler L, Maillard L, Benhadid A, Vignal JP, Felblinger J, Vespignani H, Braun M. Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system. Neuroimage. 2009;46(1):64-72. Doi: https://doi.org/10.1016/j.neuroimage.2009.02.006

Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci. 2010;4:186. Doi: https://doi.org/10.3389/fnhum.2010.00186

Barbas H, Mesulam MM. Organization of afferent input to subdivisions of area 8 in the rhesus monkey. J Comp Neurol. 1981;200(3):407-31. Doi: https://doi.org/10.1002/cne.902000309

Oliveira SMS, Medeiros CSP, Pacheco TBF, Bessa NPOS, Silva FGM, Tavares NSA, et al. Electroencephalographic changes using virtual reality program: technical note. Neurol Res. 2018;40(3):160-5. Doi: https://doi.org/10.1080/01616412.2017.1420584

Fang Y, Daly JJ, Sun J, Hvorat K, Fredrickson E, Pundik S, et al. Functional corticomuscular connection during reaching is weakened following stroke. Clinical Neurophysiology; 2009;120(5):994-1002. Doi: https://doi.org/10.1016/j.clinph.2009.02.173

Flament D, Shapiro MB, Kempf T, Corcos DM. Time course and temporal order of changes in movement kinematics during learning of fast and accurate elbow flexions. Exp Brain Res. 1999;129(3):441-50. Doi: https://doi.org/10.1007/s002210050911

Thibaut A, Simis M, Battistella LR, Fanciullacci C, Bertolucci F, Huerta-Gutierrez R, et al. Using brain oscillations and corticospinal excitability to understand and predict post-stroke motor function. Front Neurol. 2017;8:187. Doi: https://doi.org/10.3389/fneur.2017.00187

Demandt E, Mehring C, Vogt K, Schulze-Bonhage A, Aertsen A, Ball T. Reaching movement onset- and end-related characteristics of EEG spectral power modulations. Front Neurosci. 2012;6:65. https://doi.org/10.3389/fnins.2012.00065

Gao Y, Ren L, Li R, Zhang Y. Electroencephalogram-Electromyography Coupling Analysis in Stroke Based on Symbolic Transfer Entropy. Front Neurol. 2018;8:716. Doi: https://doi.org/10.3389/fneur.2017.00716

Luft AR, Smith GV, Larry F, Jill W, Macko RF, Hauser T, et al. Comparing brain activation associated with isolated upper and lower limb movement across corresponding joints. Human brain mapping 2002;17:131-40. Doi: https://doi.org/10.1002/hbm.10058

Hu XL, Tong KY, Song R, Zheng XJ, Lui KH, Leung WW, et al. Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training. J Electromyogr Kinesiol. 2009;19(4):639-50. https://doi.org/10.1016/j.jelekin.2008.04.002

Nam C, Rong W, Li W, Xie Y, Hu X, Zheng Y. The Effects of Upper-Limb Training Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation Robotic Hand on Chronic Stroke. Front Neurol. 2017;8:679. https://doi.org/10.3389/fneur.2017.00679

Ivanhoe CB, Reistetter TA. Spasticity: the misunderstood part of the upper motor neuron syndrome. Am J Phys Med Rehabil. 2004;83(10 Suppl):S3-9. https://doi.org/10.1097/01.phm.0000141125.28611.3e

Cauraugh J, Light K, Kim S, Thigpen M, Behrman A. Chronic motor dysfunction after stroke: recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke. 2000;31(6):1360-4. https://doi.org/10.1161/01.str.31.6.1360

Pellicciari MC, Bonnì S, Ponzo V, Cinnera AM, Mancini M, Casula EP, et al. Dynamic reorganization of TMS-evoked activity in subcortical stroke patients. Neuroimage. 2018;175:365-78. https://doi.org/10.1016/j.neuroimage.2018.04.011

Brinkman L, Stolk A, Dijkerman HC, Lange FP, Toni I. Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions. J Neurosci. 2014;34(44):14783-92. https://doi.org/10.1523/JNEUROSCI.2039-14.2014

Downloads

Publicado

2022-12-28

Edição

Seção

Artigo Original

Dados de financiamento

Como Citar

1.
Oliveira VA de, Dias MPF, Mendes A de P, Santos ATS, Reis LM dos, Terra AMSV. Existe correlação entre atividade elétrica muscular e cerebral após treino com terapia de contensão do membro superior e tronco em sujeitos com acidente vascular encefálico?. Acta Fisiátr. [Internet]. 28º de dezembro de 2022 [citado 19º de abril de 2024];29(4):295-301. Disponível em: https://www.revistas.usp.br/actafisiatrica/article/view/168691