Reabilitação ambulatorial da COVID longa: uma chamada à ação

Autores

  • Marta Imamura Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Faculdade de Medicina da Universidade de São Paulo https://orcid.org/0000-0003-0355-9697
  • Gilson Tanaka Shinzato Instituto de Medicina Física e Reabilitação, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo
  • Sabrina Saemy Tome Uchiyama Instituto de Medicina Física e Reabilitação, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo
  • Lucas Ramos De Pretto Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares
  • Denise Vianna Machado Ayres Instituto de Medicina Física e Reabilitação, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo
  • Simone Hitomi Oshiro Instituto de Medicina Física e Reabilitação, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo
  • Valéria Dini Leite Instituto de Medicina Física e Reabilitação, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo
  • Daniela Aguilera Moura Antonio Rossi Instituto de Medicina Física e Reabilitação, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo
  • Harumi Nemoto Kaihami Instituto de Medicina Física e Reabilitação, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo
  • Rosana Aparecida de Freitas Lopes Instituto de Medicina Física e Reabilitação, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo
  • Denise Rodrigues Tsukimoto Instituto de Medicina Física e Reabilitação, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo
  • Gabriella Souza Naves Instituto de Medicina Física e Reabilitação, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo
  • Denise Matheus Instituto de Medicina Física e Reabilitação, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo
  • Artur César Aquino dos Santos Instituto de Medicina Física e Reabilitação, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo
  • Margarida Harumi Miyazaki Instituto de Medicina Física e Reabilitação, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo
  • Linamara Rizzo Battistella Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Faculdade de Medicina da Universidade de São Paulo

DOI:

https://doi.org/10.11606/issn.2317-0190.v28i4a192649

Palavras-chave:

COVID-19, Reabilitação, Resultado do Tratamento, Equipe de Assistência ao Paciente, Centros de Reabilitação

Resumo

A COVID-19 tem consequências sensório motoras, cognitivas, psíquicas e nutricionais que necessitam de reabilitação. Objetivo: Descrever o programa de reabilitação ambulatorial desenvolvido no Instituto de Medicina Física e Reabilitação do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, otimizado, intensivo e de curta duração. Método: Obtivemos informações sociodemográficas e clínicas de 12 adultos com diagnóstico laboratorial de COVID-19, grave e crítica, que necessitaram de hospitalização na fase aguda. Avaliações funcionais: Escala de Medida de Independência Funcional (MIF), EQ-5D-5L, World Health Organization Disability Assessment Schedule (WHODAS 2.0), Post-COVID-19 Functional Status scale, Medical Research Council (MRC) dyspnea scale, escala visual analógica (EVA) para dor, DN-4 (Douleur Neuropathique 4), escala de sonolência de Epworth, Índice de Gravidade da Insônia, Montreal Ontario Cognitive Assessment (MoCA), escala de Depressão, ansiedade e estresse (DASS-21), avaliação nutricional, Timed Up and Go, teste de caminhada de 10 metros, teste de preensão palmar, MRC sum score, ultrassonografia musculoesquelética da coxa antes, durante e após programa de reabilitação ambulatorial. Este incluiu estimulação magnética indutiva e elétrica musculoesquelética, tratamento por ondas de choque extracorpóreas, exercícios isocinéticos, abordagem emocional, estimulação cognitiva, estimulação do desempenho ocupacional, orientação nutricional e programa educacional por aplicativo COMVC. O tratamento foi realizado duas vezes por semana até atingir os critérios de alta pré-estabelecidos. Resultados: VAS e TUG proporcionaram melhora estatisticamente significante (p <0,001). PCFS, MIF, Handgrip, 10 MWT e DASS-21 domínio ansiedade apresentam tendências de melhora. Conclusão: O programa melhora a dor, mobilidade e ansiedade em pacientes com COVID longa.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Abdullahi A, Candan SA, Abba MA, Bello AH, Alshehri MA, Afamefuna Victor E, et al. Neurological and Musculoskeletal Features of COVID-19: A Systematic Review and Meta-Analysis. Front Neurol. 2020;11:687. Doi: https://doi.org/10.3389/fneur.2020.00687

Negrini F, Ferrario I, Mazziotti D, Berchicci M, Bonazzi M, de Sire A, et al. Neuropsychological Features of Severe Hospitalized Coronavirus Disease 2019 Patients at Clinical Stability and Clues for Postacute Rehabilitation. Arch Phys Med Rehabil. 2021;102(1):155-8. Doi: https://doi.org/10.1016/j.apmr.2020.09.376

Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397(10270):220-32. Doi: https://doi.org/10.1016/S0140-6736(20)32656-8

Fotuhi M, Mian A, Meysami S, Raji CA. Neurobiology of COVID-19. J Alzheimers Dis. 2020;76(1):3-19. Doi: https://doi.org/10.3233/JAD-200581

Ritchie K, Chan D, Watermeyer T. The cognitive consequences of the COVID-19 epidemic: collateral damage? Brain Commun. 2020;2(2):fcaa069. Doi: https://doi.org/10.1093/braincomms/fcaa069

Thornton J. COVID-19: the challenge of patient rehabilitation after intensive care. BMJ. 2020;369:m1787. Doi: https://doi.org/10.1136/bmj.m1787

Vetter P, Lan Vu D, L´Hullier AG, Schibler M, Kaiser L, Lacqueiroz F. Clinical features of COVID-19. The wide array of symptoms has implications for the testing strategy. BMJ 2020;369:m1470. Doi: https://doi.org/10.1136/bmj.m1470

Carfì A, Bernabei R, Landi F; Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020;324(6):603-5. Doi: https://doi.org/10.1001/jama.2020.12603

Del Rio C, Collins LF, Malani P. Long-term Health Consequences of COVID-19. JAMA. 2020;324(17):1723-4. Doi: https://doi.org/10.1001/jama.2020.19719

Carvalho-Schneider C, Laurent E, Lemaignen A, Beaufils E, Bourbao-Tournois C, Laribi S, et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect. 2021;27(2):258-63. Doi: https://doi.org/10.1016/j.cmi.2020.09.052

Chopra V, Flanders SA, O'Malley M, Malani AN, Prescott HC. Sixty-Day Outcomes Among Patients Hospitalized With COVID-19. Ann Intern Med. 2021;174(4):576-8. Doi: https://doi.org/10.7326/M20-5661

Arnold DT, Hamilton FW, Milne A, Morley AJ, Viner J, Attwood M, et al. Patient outcomes after hospitalization with COVID-19 and implications for follow-up: results from a prospective UK cohort. Thorax. 2021;76(4):399-401. Doi: https://doi.org/10.1136/thoraxjnl-2020-216086

Halpin SJ, McIvor C, Whyatt G, Adams A, Harvey O, McLean L, et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J Med Virol. 2021;93(2):1013-22. Doi: https://doi.org/10.1002/jmv.26368

Moreno-Pérez O, Merino E, Leon-Ramirez JM, Andres M, Ramos JM, Arenas-Jiménez J, et al. Post-acute COVID-19 syndrome. Incidence and risk factors: A Mediterranean cohort study. J Infect. 2021;82(3):378-83. Doi: https://doi.org/10.1016/j.jinf.2021.01.004

Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601-15. Doi: https://doi.org/10.1038/s41591-021-01283-z

Raman B, Cassar MP, Tunnicliffe EM, Filippini N, Griffanti L, Alfaro-Almagro F, et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine. 2021;31:100683. Doi: https://doi.org/10.1016/j.eclinm.2020.100683

WHO (COVID-19) [homepage on the Internet]. Geneva: World Health Organization; 2021 [cited 2021 Sep 30]. Available from: https://covid19.who.int/region/amro/country/br

Croda J, Oliveira WK, Frutuoso RL, Mandetta LH, Baia-da-Silva DC, Brito-Sousa JD, et al. COVID-19 in Brazil: advantages of a socialized unified health system and preparation to contain cases. Rev Soc Bras Med Trop. 2020;53:e20200167. Doi: https://doi.org/10.1590/0037-8682-0167-2020

Marson FAL, Ortega MM. COVID-19 in Brazil. Pulmonology. 2020;26(4):241-4. Doi: https://doi.org/10.1016/j.pulmoe.2020.04.008

Battistella LR, Juca SS, Tateishi M, Oshiro MS, Yamanaka EI, Lima E, et al. Lucy Montoro Rehabilitation Network mobile unit: an alternative public healthcare policy. Disabil Rehabil Assist Technol. 2015;10(4):309-15. Doi: https://doi.org/10.3109/17483107.2015.1027294

Imamura M, Mirisola AR, Ribeiro FQ, De Pretto LR, Alfieri FM, Delgado VR, et al. Rehabilitation of patients after COVID-19 recovery: An experience at the Physical and Rehabilitation Medicine Institute and Lucy Montoro Rehabilitation Institute. Clinics (Sao Paulo). 2021;76:e2804. Doi: https://doi.org/10.6061/clinics/2021/e2804

Prvu Bettger J, Thoumi A, Marquevich V, De Groote W, Rizzo Battistella L, Imamura M, et al. COVID-19: maintaining essential rehabilitation services across the care continuum. BMJ Glob Health. 2020;5(5):e002670. Doi: https://doi.org/10.1136/bmjgh-2020-002670

Thomas P, Baldwin C, Bissett B, Boden I, Gosselink R, Granger CL, et al. Physiotherapy management for COVID-19 in the acute hospital setting: clinical practice recommendations. J Physiother. 2020;66(2):73-82. Doi: https://doi.org/10.1016/j.jphys.2020.03.011

Whittaker A, Anson M, Harky A. Neurological Manifestations of COVID-19: A systematic review and current update. Acta Neurol Scand. 2020;142(1):14-22. Doi: https://doi.org/10.1111/ane.13266

Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683-90. Doi: https://doi.org/10.1001/jamaneurol.2020.1127

Ceravolo MG, Sire A, Andrenelli E, Negrini F, Negrini S. Systematic rapid "living" review on rehabilitation needs due to COVID-19: update to March 31st, 2020. Eur J Phys Rehabil Med. 2020;56(3):347-53. Doi: https://doi.org/10.23736/S1973-9087.20.06329-7

Avellanet M, Boada-Pladellorens A, Pages-Bolibar E. Rehabilitación en época de confinamiento. Rehabilitacion (Madr). 2020;54(4):269-75. Doi: https://doi.org/10.1016/j.rh.2020.05.003

Busatto GF, Araújo AL, Duarte AJDS, Levin AS, Guedes BF, Kallas EG, et al. Post-acute sequelae of SARS-CoV-2 infection (PASC): a protocol for a multidisciplinary prospective observational evaluation of a cohort of patients surviving hospitalization in Sao Paulo, Brazil. BMJ Open. 2021;11(6):e051706. Doi: https://doi.org/10.1136/bmjopen-2021-051706

Ottenbacher KJ, Hsu Y, Granger CV, Fiedler RC. The reliability of the functional independence measure: a quantitative review. Arch Phys Med Rehabil. 1996;77(12):1226-32. Doi: https://doi.org/10.1016/s0003-9993(96)90184-7

Riberto M, Miyazaki MH, Jucá SSH, Sakamoto H, Pinto PPN, Battistella LR. Validation of the Brazilian version of FunctionalIndependence Measure. Acta Fisiatr. 2004; 11(2):72-6. Doi: https://doi.org/10.5935/0104-7795.20040003

Rabin R, de Charro F. EQ-5D: a measure of health status from the EuroQol Group. Ann Med. 2001;33(5):337-43. Doi: https://doi.org/10.3109/07853890109002087

Craig BM, Monteiro AL, Herdman M, Santos M. Further evidence on EQ-5D-5L preference inversion: a Brazil/U.S. collaboration. Qual Life Res. 2017;26(9):2489-96. Doi: https://doi.org/10.1007/s11136-017-1591-8

Andrews G, Kemp A, Sunderland M, Von Korff M, Ustun TB. Normative data for the 12 item WHO Disability Assessment Schedule 2.0. PLoS One. 2009;4(12):e8343. Doi: https://doi.org/10.1371/journal.pone.0008343

Moreira A, Alvarelhão J, Silva AG, Costa R, Queirós A. Validation of a Portuguese version of WHODAS 2.0 ‐ 12 items in people aged 55 or more. Rev Port Saúde Pública. 2015;33(2):179-82. Doi: https://doi.org/10.1016/j.rpsp.2015.06.003

Klok FA, Boon GJAM, Barco S, Endres M, Geelhoed JJM, Knauss S, et al. The Post-COVID-19 Functional Status scale: a tool to measure functional status over time after COVID-19. Eur Respir J. 2020;56(1):2001494. Doi: https://doi.org/10.1183/13993003.01494-2020

Kovelis D, Segretti NO, Probst VS, Lareau SC, Brunetto AF, Pitta F. Validation of the Modified Pulmonary Functional Status and Dyspnea Questionnaire and the Medical Research Council scale for use in Brazilian patients with chronic obstructive pulmonary disease. J Bras Pneumol. 2008;34(12):1008-18. Doi: https://doi.org/10.1590/s1806-37132008001200005

Webster K, Cella D, Yost K. The Functional Assessment of Chronic Illness Therapy (FACIT) Measurement System: properties, applications, and interpretation. Health Qual Life Outcomes. 2003;1:79. Doi: https://doi.org/10.1186/1477-7525-1-79

McCormack HM, Horne DJ, Sheather S. Clinical applications of visual analogue scales: a critical review. Psychol Med. 1988;18(4):1007-19. Doi: https://doi.org/10.1017/s0033291700009934

Santos JG, Brito JO, Andrade DC, Kaziyama VM, Ferreira KA, Souza I, et al. Translation to Portuguese and validation of the Douleur Neuropathique 4 questionnaire. J Pain. 2010;11(5):484-90. Doi: https://doi.org/10.1016/j.jpain.2009.09.014

Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540-5. Doi: https://doi.org/10.1093/sleep/14.6.540

Bastien CH, Vallières A, Morin CM. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med. 2001;2(4):297-307. Doi: https://doi.org/10.1016/s1389-9457(00)00065-4

Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695-9. Doi: https://doi.org/10.1111/j.1532-5415.2005.53221.x

Memória CM, Yassuda MS, Nakano EY, Forlenza OV. Brief screening for mild cognitive impairment: validation of the Brazilian version of the Montreal cognitive assessment. Int J Geriatr Psychiatry. 2013;28(1):34-40. Doi: https://doi.org/10.1002/gps.3787

Henry JD, Crawford JR. The short-form version of the Depression Anxiety Stress Scales (DASS-21): construct validity and normative data in a large non-clinical sample. Br J Clin Psychol. 2005;44(Pt 2):227-39. Doi: https://doi.org/10.1348/014466505X29657

Vignola RC, Tucci AM. Adaptation and validation of the depression, anxiety and stress scale (DASS) to Brazilian Portuguese. J Affect Disord. 2014;155:104-9. Doi: https://doi.org/10.1016/j.jad.2013.10.031

Crary MA, Mann GD, Groher ME. Initial psychometric assessment of a functional oral intake scale for dysphagia in stroke patients. Arch Phys Med Rehabil. 2005;86(8):1516-20. Doi: https://doi.org/10.1016/j.apmr.2004.11.049

Martinez AP, de Azevedo GR. The Bristol Stool Form Scale: its translation to Portuguese, cultural adaptation and validation. Rev Lat Am Enfermagem. 2012;20(3):583-9. Doi: https://doi.org/10.1590/s0104-11692012000300021

Fisberg RM, Slater B, Marchioni DML, Martini LA. Inquéritos alimentares: métodos e bases científicos. Barueri: Manole; 2005.

Medical Research Council. Aids to examination of the peripheral nervous system. London: Her Majesty’s Stationary Office; 1976. [Memorandum No. 45].

Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142-8. Doi: https://doi.org/10.1111/j.1532-5415.1991.tb01616.x

Watson MJ. Refining the Ten-metre Walking Test for Use with Neurologically Impaired People. Physiotherapy. 2002;88(7):386-97. Doi: https://doi.org/10.1016/S0031-9406(05)61264-3

Bohannon RW, Crouch R. 1-Minute Sit-to-Stand Test: systematic review of procedures, performance, and clinimetric properties. J Cardiopulm Rehabil Prev. 2019;39(1):2-8. Doi: https://doi.org/10.1097/HCR.0000000000000336

Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-81.

Lung function testing: selection of reference values and interpretative strategies. American Thoracic Society. Am Rev Respir Dis. 1991;144(5):1202-18. Doi: https://doi.org/10.1164/ajrccm/144.5.1202

Abdalla IM, Brandão MC. Forças de preensão palmar e da pinça digital. In: Sociedade Brasileira de Terapeutas da Mão. Recomendações para avaliação do membro superior. 2 ed. São Paulo: SBTM; 2005. p.38-41.

Bohannon RW. Muscle strength: clinical and prognostic value of handgrip dynamometry. Curr Opin Clin Nutr Metab Care. 2015;18(5):465-70. Doi: https://doi.org/10.1097/MCO.0000000000000202

Lebrão M, Duarte Y. SABE-Saúde, bem-estar e envelhecimento: o projeto SABE no município de São Paulo, uma abordagem inicial. Brasília: OPAS/OMS; 2003.

World Health Organization. Obesity: preventing and managing the global epidemic. Geneva: WHO; 1997.

Imamura M, Alamino S, Hsing WT, Alfieri FM, Schmitz C, Battistella LR. Radial extracorporeal shock wave therapy for disabling pain due to severe primary knee osteoarthritis. J Rehabil Med. 2017;49(1):54-62. Doi: https://doi.org/10.2340/16501977-2148

Kralj AR, Bajd T. Functional electrical stimulation: standing and walking after spinal cord injury. Boca Raton: CRC Press; 1989.

Binder-Macleod SA, Halden EE, Jungles KA. Effects of stimulation intensity on the physiological responses of human motor units. Med Sci Sports Exerc. 1995;27(4):556-65.

Hannerz J. Discharge properties of motor units in relation to recruitment order in voluntary contraction. Acta Physiol Scand. 1974;91(3):374-85. Doi: https://doi.org/10.1111/j.1748-1716.1974.tb05692.x

Paolucci T, Pezzi L, Centra AM, Giannandrea N, Bellomo RG, Saggini R. Electromagnetic field therapy: a rehabilitative perspective in the management of musculoskeletal pain - a systematic review. J Pain Res. 2020;13:1385-1400. Doi: https://doi.org/10.2147/JPR.S231778

Cramer JT, Jenkins NDM, Mustad VA, Weir JP. Isokinetic Dynamometry in Healthy Versus Sarcopenic and Malnourished Elderly: Beyond Simple Measurements of Muscle Strength. J Appl Gerontol. 2017;36(6):709-32. Doi: https://doi.org/10.1177/0733464815584669

NeuronUP. Plataforma de estimulación cognitiva para profesionales [homepage on the Internet]. Logronõ: NeuronUP; c2021 [cited 2021 Sep 30]. Available from: https://www.neuronup.com/

Dobson D, Dobson KS. Começando o tratamento: habilidades básicas. In: Dobson D, Dobson KS. A terapia cognitivo-comportamental baseada em evidências. Porto Alegre: Artmed; 2010. p. 69-75.

Brasil. Ministério da Saúde. Guia alimentar para a população brasileira. Brasília: Ministério da Saúde; 2014.

COMVC [Smartphone Apps]. São Paulo: Hospital das Clínicas da FMUSP; c2021 [cited 2021 Sep 30]. Available from: https://play.google.com/store/apps/details?id=com.ipq.ComVc&hl=pt_BR&gl=US

Barry E, Galvin R, Keogh C, Horgan F, Fahey T. Is the Timed Up and Go test a useful predictor of risk of falls in community dwelling older adults: a systematic review and meta-analysis. BMC Geriatr. 2014;14:14. Doi: https://doi.org/10.1186/1471-2318-14-14

Christopher A, Kraft E, Olenick H, Kiesling R, Doty A. The reliability and validity of the Timed Up and Go as a clinical tool in individuals with and without disabilities across a lifespan: a systematic review. Disabil Rehabil. 2021;43(13):1799-1813. Doi: https://doi.org/10.1080/09638288.2019.1682066

Chan PP, Si Tou JI, Tse MM, Ng SS. Reliability and validity of the timed up and go test with a motor task in people with chronic stroke. Arch Phys Med Rehabil. 2017;98(11):2213-2220. Doi: https://doi.org/10.1016/j.apmr.2017.03.008

Williams JM, Nyman SR. Age Moderates Differences in Performance on the Instrumented Timed Up and Go Test between people with dementia and their informal caregivers. J Geriatr Phys Ther. 2021;44(3):E150-E157. Doi: https://doi.org/10.1519/JPT.0000000000000265

Stienen MN, Maldaner N, Sosnova M, Zeitlberger AM, Ziga M, Weyerbrock A, et al. External Validation of the Timed Up and Go Test as Measure of Objective Functional Impairment in Patients With Lumbar Degenerative Disc Disease. Neurosurgery. 2021;88(2):E142-E149. Doi: https://doi.org/10.1093/neuros/nyaa441

Bozhilov K, Vo KB, Wong LL. Can the Timed Up & Go Test and Montreal Cognitive Assessment predict outcomes in patients waitlisted for renal transplant? Clin Transplant. 2021;35(1):e14161. Doi: https://doi.org/10.1111/ctr.14161

Bohannon RW. Reference values for the timed up and go test: a descriptive meta-analysis. J Geriatr Phys Ther. 2006;29(2):64-8. Doi: https://doi.org/10.1519/00139143-200608000-00004

Sheth M, Bhattad R, Shyam A, Sancheti P. Timed Up and Go Test (TUG): Reference Data for Indian School Age Children. Indian J Pediatr. 2021;88(1):72. Doi: https://doi.org/10.1007/s12098-020-03353-5

Nightingale CJ, Mitchell SN, Butterfield SA. Validation of the Timed Up and Go Test for Assessing Balance Variables in Adults Aged 65 and Older. J Aging Phys Act. 2019;27(2):230-3. Doi: https://doi.org/10.1123/japa.2018-0049

Kemp HI, Corner E, Colvin LA. Chronic pain after COVID-19: implications for rehabilitation. Br J Anaesth. 2020;125(4):436-40. Doi: https://doi.org/10.1016/j.bja.2020.05.021

Anastasio F, Barbuto S, Scarnecchia E, Cosma P, Fugagnoli A, Rossi G, et al. Medium-term impact of COVID-19 on pulmonary function, functional capacity and quality of life. Eur Respir J. 2021;58(3):2004015. Doi: https://doi.org/10.1183/13993003.04015-2020

Bellan M, Soddu D, Balbo PE, Baricich A, Zeppegno P, Avanzi GC, et al. Respiratory and psychophysical sequelae among patients with COVID-19 four months after hospital discharge. JAMA Netw Open. 2021;4(1):e2036142. Doi: https://doi.org/10.1001/jamanetworkopen.2020.36142

Robinson AJ, Snyder-Mackler LS. Clinical electrophysiology: electrotherapy and electrophysiologic testing. 2 ed. Philadelphia: Williams & Wilkins; 1995.

Pietrangelo T, Toniolo L, Paoli A, Fulle S, Puglielli C, Fanò G, et al. Functional characterization of muscle fibres from patients with chronic fatigue syndrome: case-control study. Int J Immunopathol Pharmacol. 2009;22(2):427-36. Doi: https://doi.org/10.1177/039463200902200219

Suh J, Mukerji SS, Collens SI, Padera RF Jr, Pinkus GS, Amato AA, et al. Skeletal muscle and peripheral nerve histopathology in COVID-19. Neurology. 2021;97(8):e849-e858. Doi: https://doi.org/110.1212/WNL.0000000000012344

Burnham R, Martin T, Stein R, Bell G, MacLean I, Steadward R. Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord. 1997;35(2):86-91. Doi: https://doi.org/10.1038/sj.sc.3100364

Staron RS. Human skeletal muscle fiber types: delineation, development, and distribution. Can J Appl Physiol. 1997;22(4):307-27. Doi: https://doi.org/10.1139/h97-020

Gregory CM, Bickel CS. Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther. 2005;85(4):358-64.

Heydari K, Rismantab S, Shamshirian A, Lotfi P, Shadmehri N, Houshmand P, et al. Clinical and Paraclinical Characteristics of COVID-19 patients: a systematic review and meta-analysis. medRxiv. 2020.03.26.20044057. Doi: https://doi.org/10.1101/2020.03.26.20044057

Andrade-Junior MC, Salles ICD, Brito CMM, Pastore-Junior L, Righetti RF, Yamaguti WP. Skeletal Muscle Wasting and Function Impairment in Intensive Care Patients With Severe COVID-19. Front Physiol. 2021;12:640973. Doi: https://doi.org/10.3389/fphys.2021.640973

Forcina L, Miano C, Scicchitano BM, Rizzuto E, Berardinelli MG, De Benedetti F, et al. Increased circulating levels of interleukin-6 affect the redox balance in skeletal muscle. Oxid Med Cell Longev. 2019;2019:3018584. Doi: https://doi.org/10.1155/2019/3018584

Kirwan R, McCullough D, Butler T, Perez de Heredia F, Davies IG, Stewart C. Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss. Geroscience. 2020;42(6):1547-78. Doi: https://doi.org/10.1007/s11357-020-00272-3

Stringer HJ, Wilson D. The Role of Ultrasound as a Diagnostic Tool for Sarcopenia. J Frailty Aging. 2018;7(4):258-61. Doi: https://doi.org/10.14283/jfa.2018.24

Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. Doi: https://doi.org/10.1093/ageing/afy169

Lukens EP, McFarlane WR. Psychoeducation as evidence-based practice: considerations for practice, research, and policy. Brief Treat Crisis Interv. 2014;4(3):205-25. Doi: https://doi.org/10.1093/brief-treatment/mhh019

Baumgartner RN, Wayne SJ, Waters DL, Janssen I, Gallagher D, Morley JE. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res. 2004;12(12):1995-2004. Doi: https://doi.org/10.1038/oby.2004.250

Martinez AP, Azevedo GR. Tradução, adaptação cultural e validação da Bristol Stool Form Scale para a população brasileira. Rev Latino-Am Enfermagem. 2012.20(3):583-9. Doi: https://doi.org/10.1590/S0104-11692012000300021

Eswaran S. Nonmedical Therapies for Chronic Constipation. Gastroenterol Hepatol (N Y). 2021;17(3):132-4.

Werneck AO, Silva DR, Malta DC, Gomes CS, Souza-Júnior PRB, Azevedo LO, et al. Associations of sedentary behaviours and incidence of unhealthy diet during the COVID-19 quarantine in Brazil. Public Health Nutrition 2021;24(3):422-6. Doi: https://doi.org/10.1017/S1368980020004188

Neira C, Godinho R, Rincón F, Mardones R, Pedroso J. Consequences of the COVID-19 syndemic for nutritional health: a systematic review. Nutrients. 2021;13(4):1168. Doi: https://doi.org/10.3390/nu13041168

Martinez-Ferran M, Guía-Galipienso F, Sanchis-Gomar F, Pareja-Galeano H. Metabolic impacts of confinement during the COVID-19 pandemic due to modified diet and physical activity habits. Nutrients. 2020;12(6):1549. Doi: https://doi.org/10.3390/nu12061549

Judge JO, Schechtman K, Cress E. The relationship between physical performance measures and independence in instrumental activities of daily living. The FICSIT Group. Frailty and Injury: Cooperative Studies of Intervention Trials. J Am Geriatr Soc. 1996;44(11):1332-41. Doi: https://doi.org/10.1111/j.1532-5415.1996.tb01404.x

Meskers CGM, Reijnierse EM, Numans ST, Kruizinga RC, Pierik VD, van Ancum JM, et al. Association of Handgrip Strength and Muscle Mass with Dependency in (Instrumental) Activities of Daily Living in Hospitalized Older Adults -The EMPOWER Study. J Nutr Health Aging. 2019;23(3):232-238. Doi: https://doi.org/10.1007/s12603-019-1170-5

De Livera AM, Zaloumis S, Simpson JA. Models for the analysis of repeated continuous outcome measures in clinical trials. Respirology. 2014;19(2):155-61. Doi: https://doi.org/https://doi.org/10.1111/resp.12217

Downloads

Publicado

2021-12-31

Edição

Seção

Artigo Original

Como Citar

1.
Imamura M, Shinzato GT, Uchiyama SST, De Pretto LR, Ayres DVM, Oshiro SH, et al. Reabilitação ambulatorial da COVID longa: uma chamada à ação. Acta Fisiátr. [Internet]. 31º de dezembro de 2021 [citado 18º de abril de 2024];28(4):221-37. Disponível em: https://www.revistas.usp.br/actafisiatrica/article/view/192649