O efeito da intervenção não farmacológica na densidade mineral óssea de pacientes com lesão medular: uma revisão sistemática

Autores

  • Rickella Aparecida Alves Moreira Instituto de Medicina Física e Reabilitação, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo https://orcid.org/0000-0002-9959-4384
  • Natália Silveira de Paiva Instituto de Medicina Física e Reabilitação, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo
  • Flavio Rodrigo Cichon Instituto de Medicina Física e Reabilitação, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo https://orcid.org/0000-0002-0757-6200
  • Marta Imamura Instituto de Medicina Física e Reabilitação, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo https://orcid.org/0000-0003-0355-9697
  • Daniel Rubio de Souza Instituto de Medicina Física e Reabilitação, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo

DOI:

https://doi.org/10.11606/issn.2317-0190.v28i1a173528

Palavras-chave:

Osteoporose, Densidade Óssea, Estimulação Elétrica, Traumatismos da Medula Espinal/reabilitação, Exercício Físico

Resumo

Objetivo: Avaliar os efeitos das medidas não farmacológicas na prevenção de perda ou no aumento da densidade mineral óssea de pacientes com lesão medular. Método: Revisão sistemática usando as bases de dados Medline, Embase, Cochrane Library e Lilacs com pesquisa entre 2009 e junho de 2019. Resultados: Foram encontrados 801 artigos dos quais foram selecionados, de acordo com os critérios de inclusão e exclusão, 15 artigos: 8 Estudos Clínicos Randomizados (ECR), 5 Estudos de Intervenção e 2 Revisões Sistemáticas. Conclusão: As evidências do uso de terapias não farmacológicas para prevenção e tratamento da osteoporose em LM são fracas e seus estudos contêm inúmeros vieses impossibilitando conclusões definitivas. O FES é a modalidade mais estudada e seu uso pode ser benéfico tanto para prevenção como para o tratamento da perda de massa óssea. Os resultados são observados com um uso frequente (5 sessões semanais) e associado a atividades físicas em especial as que promovam maior resistência muscular. Destacamos também que o retardo na perda de massa óssea está circunscrito ao período de aplicação, cessando após o término do mesmo. A associação de eletroestimulação e exercícios parece potencializar a ação medicamentosa, mas mais estudos são necessários para ratificar esta impressão. Intervenções não farmacológicas como o ortostatismo, atividades físicas, treino de marcha e a eletroestimulação são estratégias de baixo custo, baixo risco, poucos efeitos colaterais e com inúmeros outros benefícios na reabilitação de lesados medulares. Por isso, ainda que não tenhamos evidências consistentes de ação na massa óssea, estão fortemente recomendados.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Spinal cord injury facts and figures at a glance. J Spinal Cord Med. 2012;35(4):197-8. Doi: https://doi.org/10.1179/1079026812Z.00000000063

Brasil. Ministério da Saúde. Diretrizes de atenção à pessoa com lesão medular. 2 ed. Brasília (DF): Ministério da Saúde; 2015.

Dionyssiotis Y, Stathopoulos K, Trovas G, Papaioannou N, Skarantavos G, Papagelopoulos P. Impact on bone and muscle area after spinal cord injury. Bonekey Rep. 2015;4:633. Doi: https://doi.org/10.1038/bonekey.2014.128

Mazwi NL, Adeletti K, Hirschberg RE. Traumatic Spinal Cord Injury: Recovery, Rehabilitation, and Prognosis. Curr Trauma Rep. 2015;1(3):182-92. Doi: https://doi.org/10.1007/s40719-015-0023-x

Hammond ER, Metcalf HM, McDonald JW, Sadowsky CL. Bone mass in individuals with chronic spinal cord injury: associations with activity-based therapy, neurologic and functional status, a retrospective study. Arch Phys Med Rehabil. 2014;95(12):2342-9. Doi: https://doi.org/10.1016/j.apmr.2014.07.395

Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, Weisman MH. Reumatologia. 6 ed. Rio de Janeiro: Elsevier; 2016.

Jiang SD, Jiang LS, Dai LY. Mechanisms of osteoporosis in spinal cord injury. Clin Endocrinol (Oxf). 2006;65(5):555-65. Doi: https://doi.org/10.1111/j.1365-2265.2006.02683.x

Maïmoun L, Fattal C, Micallef JP, Peruchon E, Rabischong P. Bone loss in spinal cord-injured patients: from physiopathology to therapy. Spinal Cord. 2006;44(4):203-10. Doi: https://doi.org/10.1038/sj.sc.3101832

Haider IT, Lobos SM, Simonian N, Schnitzer TJ, Edwards WB. Bone fragility after spinal cord injury: reductions in stiffness and bone mineral at the distal femur and proximal tibia as a function of time. Osteoporos Int. 2018;29(12):2703-15. Doi: https://doi.org/10.1007/s00198-018-4733-0

Dionyssiotis Y, Lyritis GP, Mavrogenis AF, Papagelopoulos PJ. Factors influencing bone loss in paraplegia. Hippokratia. 2011;15(1):54-9.

Maïmoun L, Fattal C, Sultan C. Bone remodeling and calcium homeostasis in patients with spinal cord injury: a review. Metabolism. 2011;60(12):1655-63. Doi: https://doi.org/10.1016/j.metabol.2011.04.005

Charmetant C, Phaner V, Condemine A, Calmels P. Diagnosis and treatment of osteoporosis in spinal cord injury patients: A literature review. Ann Phys Rehabil Med. 2010;53(10):655-68. Doi: https://doi.org/10.1016/j.rehab.2010.10.001

Soleyman-Jahi S, Yousefian A, Maheronnaghsh R, Shokraneh F, Zadegan SA, Soltani A, et al. Evidence-based prevention and treatment of osteoporosis after spinal cord injury: a systematic review. Eur Spine J. 2018;27(8):1798-1814. Doi: https://doi.org/10.1007/s00586-017-5114-7

Fattal C, Mariano-Goulart D, Thomas E, Rouays-Mabit H, Verollet C, Maimoun L. Osteoporosis in persons with spinal cord injury: the need for a targeted therapeutic education. Arch Phys Med Rehabil. 2011;92(1):59-67. Doi: https://doi.org/10.1016/j.apmr.2010.09.019

Bauman WA, Cardozo CP. Osteoporosis in individuals with spinal cord injury. PM R. 2015;7(2):188-201. Doi: https://doi.org/10.1016/j.pmrj.2014.08.948

Cirnigliaro CM, Myslinski MJ, La Fountaine MF, Kirshblum SC, Forrest GF, Bauman WA. Bone loss at the distal femur and proximal tibia in persons with spinal cord injury: imaging approaches, risk of fracture, and potential treatment options. Osteoporos Int. 2017;28(3):747-65. Doi: https://doi.org/10.1007/s00198-016-3798-x

Troy KL, Morse LR. Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction. Top Spinal Cord Inj Rehabil. 2015;21(4):267-74. Doi: https://doi.org/10.1310/sci2104-267

Craven C, Lynch CL, Eng JJ. Bone Health Following Spinal Cord Injury. In: Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, et al. Spinal Cord Injury Rehabilitation Evidence. Version 5.0. Vancouver: SCIRE; 2019. p 1-37.

Battaglino RA, Lazzari AA, Garshick E, Morse LR. Spinal cord injury-induced osteoporosis: pathogenesis and emerging therapies. Curr Osteoporos Rep. 2012;10(4):278-85. Doi: https://doi.org/10.1007/s11914-012-0117-0

Biering-Sørensen F, Hansen B, Lee BS. Non-pharmacological treatment and prevention of bone loss after spinal cord injury: a systematic review. Spinal Cord. 2009;47(7):508-18. Doi: https://doi.org/10.1038/sc.2008.177

Craven BC, Giangregorio LM, Alavinia SM, Blencowe LA, Desai N, Hitzig SL, et al. Evaluating the efficacy of functional electrical stimulation therapy assisted walking after chronic motor incomplete spinal cord injury: effects on bone biomarkers and bone strength. J Spinal Cord Med. 2017;40(6):748-58. Doi: https://doi.org/10.1080/10790268.2017.1368961

Arija-Blázquez A, Ceruelo-Abajo S, Díaz-Merino MS, Godino-Durán JA, Martínez-Dhier L, Martin JL, et al. Effects of electromyostimulation on muscle and bone in men with acute traumatic spinal cord injury: A randomized clinical trial. J Spinal Cord Med. 2014;37(3):299-309. Doi: https://doi.org/10.1179/2045772313Y.0000000142

Menéndez H, Ferrero C, Martín-Hernández J, Figueroa A, Marín PJ, Herrero AJ. Chronic effects of simultaneous electromyostimulation and vibration on leg blood flow in spinal cord injury. Spinal Cord. 2016;54(12):1169-75. Doi: https://doi.org/10.1038/sc.2016.60

Dudley-Javoroski S, Saha PK, Liang G, Li C, Gao Z, Shields RK. High dose compressive loads attenuate bone mineral loss in humans with spinal cord injury. Osteoporos Int. 2012;23(9):2335-46. Doi: https://doi.org/10.1007/s00198-011-1879-4

Groah SL, Lichy AM, Libin AV, Ljungberg I. Intensive electrical stimulation attenuates femoral bone loss in acute spinal cord injury. PM R. 2010;2(12):1080-7. Doi: https://doi.org/10.1016/j.pmrj.2010.08.003

Lai CH, Chang WH, Chan WP, Peng CW, Shen LK, Chen JJ, et al. Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury. J Rehabil Med. 2010;42(2):150-4. Doi: https://doi.org/10.2340/16501977-0499

Morse LR, Troy KL, Fang Y, Nguyen N, Battaglino R, Goldstein RF, et al. Combination therapy with zoledronic acid and fes-row training mitigates bone loss in paralyzed legs: results of a randomized comparative clinical trial. JBMR Plus. 2019;3(5):e10167. Doi: https://doi.org/10.1002/jbm4.10167

Dudley-Javoroski S, Petrie MA, McHenry CL, Amelon RE, Saha PK, Shields RK. Bone architecture adaptations after spinal cord injury: impact of long-term vibration of a constrained lower limb. Osteoporos Int. 2016;27(3):1149-60. Doi: https://doi.org/10.1007/s00198-015-3326-4

Edwards WB, Simonian N, Haider IT, Anschel AS, Chen D, Gordon KE, et al. Effects of teriparatide and vibration on bone mass and bone strength in people with bone loss and spinal cord injury: a randomized, controlled trial. J Bone Miner Res. 2018;33(10):1729-1740. Doi: https://doi.org/10.1002/jbmr.3525

Wuermser LA, Beck LA, Lamb JL, Atkinson EJ, Amin S. The effect of low-magnitude whole body vibration on bone density and microstructure in men and women with chronic motor complete paraplegia. J Spinal Cord Med. 2015;38(2):178-86. Doi: https://doi.org/10.1179/2045772313Y.0000000191

Astorino TA, Harness ET, Witzke KA. Effect of chronic activity-based therapy on bone mineral density and bone turnover in persons with spinal cord injury. Eur J Appl Physiol. 2013;113(12):3027-37. doi: https://doi.org/10.1007/s00421-013-2738-0

Chain A, Koury JC, Bezerra FF. Physical activity benefits bone density and bone-related hormones in adult men with cervical spinal cord injury. Eur J Appl Physiol. 2012;112(9):3179-86. Doi: https://doi.org/10.1007/s00421-011-2303-7

Karelis AD, Carvalho LP, Castillo MJ, Gagnon DH, Aubertin-Leheudre M. Effect on body composition and bone mineral density of walking with a robotic exoskeleton in adults with chronic spinal cord injury. J Rehabil Med. 2017;49(1):84-87. Doi: https://doi.org/10.2340/16501977-2173

Chang KV, Hung CY, Chen WS, Lai MS, Chien KL, Han DS. Effectiveness of bisphosphonate analogues and functional electrical stimulation on attenuating post-injury osteoporosis in spinal cord injury patients- a systematic review and meta-analysis. PLoS One. 2013;8(11):e81124. Doi: https://doi.org/10.1371/journal.pone.0081124

Ackerman P, Morrison SA, McDowell S, Vazquez L. Using the Spinal Cord Independence Measure III to measure functional recovery in a post-acute spinal cord injury program. Spinal Cord. 2010;48(5):380-7. Doi: https://doi.org/10.1038/sc.2009.140

Dittuno PL, Ditunno JF Jr. Walking index for spinal cord injury (WISCI II): scale revision. Spinal Cord. 2001;39(12):654-6. Doi: https://doi.org/10.1038/sj.sc.3101223

Downloads

Publicado

2021-03-31

Edição

Seção

Artigo de Revisão

Como Citar

1.
Moreira RAA, Paiva NS de, Cichon FR, Imamura M, Souza DR de. O efeito da intervenção não farmacológica na densidade mineral óssea de pacientes com lesão medular: uma revisão sistemática. Acta Fisiátr. [Internet]. 31º de março de 2021 [citado 25º de abril de 2024];28(1):54-65. Disponível em: https://www.revistas.usp.br/actafisiatrica/article/view/173528