Histomorphometric analysis of liver biopsies of treated patients with Gaucher disease type 1

Authors

  • Rodrigo Tzovenos Starosta Universidade Federal do Rio Grande do Sul, Graduate Program in Genetics and Molecular Biology, Porto Alegre, RS, Brasil https://orcid.org/0000-0002-2350-7192
  • Marina Siebert Hospital de Clínicas de Porto Alegre, Laboratorial Research Unit, Experimental Research Center, Porto Alegre, RS, Brasil https://orcid.org/0000-0003-3366-2177
  • Filippo Pinto e Vairo Mayo Clinic, Center for Individualized Medicine, Rochester, MN, USA https://orcid.org/0000-0001-6030-1903
  • Bruno Lafaiete de Lima Costa Hospital de Clínicas de Porto Alegre, Department of Surgical Pathology, Porto Alegre, RS, Brasil
  • Christiano Tomaso Ponzoni Hospital de Clínicas de Porto Alegre, Department of Surgical Pathology, Porto Alegre, RS, Brasil
  • Ida Vanessa Doederlein Schwartz Universidade Federal do Rio Grande do Sul, Graduate Program in Genetics and Molecular Biology, Porto Alegre, RS, Brasil https://orcid.org/0000-0002-7933-6687
  • Carlos Thadeu Schmidt Cerski Universidade Federal do Rio Grande do Sul, Graduate Program in Science in Gastroenterology and Hepatology, Porto Alegre, RS, Brasil https://orcid.org/0000-0002-2757-4974

DOI:

https://doi.org/10.4322/acr.2021.306

Keywords:

Gaucher Disease, Image Cytometry, Hepatocytes, Bile Canaliculi, Biopsy, Large-Core Needle

Abstract

Gaucher disease (GD) is an autosomal recessive lysosomal disorder caused by a disturbance in the metabolism of glucocerebroside in the macrophages. Most of its manifestations – hepatosplenomegaly, anemia, thrombocytopenia, and bone pain – are amenable to a macrophage-target therapy such as enzyme replacement. However, there is increasing evidence that abnormalities of the liver persist despite the specific GD treatment. In this work, we adapted histomorphometry techniques to the study of hepatocytes in GD using liver tissue of treated patients, developing the first morphometrical method for canalicular quantification in immunohistochemistry-stained liver biopsies, and exploring histomorphometric characteristics of GD. This is the first histomorphometric technique developed for canalicular analysis on histological liver biopsy samples.

Downloads

Download data is not yet available.

References

Stirnemann J, Belmatoug N, Camou F, et al. A review of Gaucher Disease pathophysiology, clinical presentation and treatments. Int J Mol Sci. 2017;18(2):441. http://dx.doi.org/10.3390/ijms18020441. PMid:28218669.

Aflaki E, Moaven N, Borger DK, et al. Lysosomal storage and impaired autophagy lead to inflammasome activation in Gaucher macrophages. Aging Cell. 2016;15(1):77-88. http://dx.doi.org/10.1111/acel.12409. PMid:26486234.

Boven LA, van Meurs M, Boot RG, et al. Gaucher cells demonstrate a distinct macrophage phenotype and resemble alternatively activated macrophages. Am J Clin Pathol. 2004;122(3):359-69. http://dx.doi.org/10.1309/BG5VA8JRDQH1M7HN. PMid:15362365.

Adar T, Ilan Y, Elstein D, Zimran A. Liver involvement in Gaucher disease - review and clinical approach. Blood Cells Mol Dis. 2018;68:66-73. PMid:27842801.

James SP, Stromeyer FW, Chang C, Barranger JA. LIver abnormalities in patients with Gaucher’s disease. Gastroenterology. 1981;80(1):126-33. http://dx.doi.org/10.1016/0016-5085(81)90202-X. PMid:7450398.

Tekoah Y, Tzaban S, Kizhner T, et al. Glycosylation and functionality of recombinant β-glucocerebrosidase from various production systems. Biosci Rep. 2013;33(5):e00071. http://dx.doi.org/10.1042/BSR20130081. PMid:23980545.

Oliveira FL, Alegra T, Dornelles A, et al. Quality of life of brazilian patients with Gaucher disease and fabry disease. JIMD Rep. 2012;7:31-7. http://dx.doi.org/10.1007/8904_2012_136. PMid:23430492.

Nascimbeni F, Cassinerio E, Dalla Salda A, et al. Prevalence and predictors of liver fibrosis evaluated by vibration controlled transient elastography in type 1 Gaucher disease. Mol Genet Metab. 2018;125(1-2):64-72. http://dx.doi.org/10.1016/j.ymgme.2018.08.004. PMid:30115580.

Serai SD, Naidu AP, Burrow TA, Prada CE, Xanthakos S, Towbin AJ. Correlating liver stiffness with disease severity scoring system (DS3) values in Gaucher disease type 1 (GD1) patients. Mol Genet Metab. 2018;123(3):357-63. http://dx.doi.org/10.1016/j.ymgme.2017.10.013. PMid:29361370.

Pedroso MLA, Didoné CN Fo, Radunz V, Barros JA. Liver damage in a patient with Gaucher’s disease type 1 and alpha-1 antitrypsin deficiency: a potential epigenetic effect? J Gastrointestin Liver Dis. 2019;28(1):121-3. PMid:30851181.

Lipiński P, Szymańska-Rożek P, Socha P, Tylki-Szymańska A. Controlled attenuation parameter and liver stiffness measurements using transient elastography by FibroScan in Gaucher disease. Mol Genet Metab. 2020;129(2):125-31. PMid:31704237.

Taddei TH, Dziura J, Chen S, et al. High incidence of cholesterol gallstone disease in type 1 Gaucher disease: characterizing the biliary phenotype of type 1 Gaucher disease. J Inherit Metab Dis. 2010;33(3):291-300. http://dx.doi.org/10.1007/s10545-010-9070-1. PMid:20354791.

Zimmermann A, Popp RA, Al-Khzouz C, et al. Cholelithiasis in Patients with Gaucher Disease type 1: risk factors and the role of ABCG5/ABCG8 gene variants. J Gastrointestin Liver Dis. 2016;25(4):447-55.

Rosenbaum H, Sidransky E. Cholelithiasis in patients with Gaucher disease. Blood Cells Mol Dis. 2002;28(1):21-7.

Starosta RT, Vairo FPE, Dornelles AD, et al. Liver involvement in patients with Gaucher disease types I and III. Mol Genet Metab Rep. 2020;22:100564. http://dx.doi.org/10.1016/j.ymgmr.2019.100564. PMid:32099816.

Pentchev PG, Gal AE, Wong R, et al. Biliary excretion of glycolipid in induced or inherited glucosylceramide lipidosis. Biochim Biophys Acta. 1981;665(3):615-8. http://dx.doi.org/10.1016/0005-2760(81)90279-4. PMid:7295755.

Crawford JM. Role of vesicle-mediated transport pathways in hepatocellular bile secretion. Semin Liver Dis. 1996;16(2):169-89. http://dx.doi.org/10.1055/s-2007-1007230. PMid:8781022.

Lee WK, Kolesnick RN. Sphingolipid abnormalities in cancer multidrug resistance: chicken or egg? Cell Signal. 2017;38:134-45. http://dx.doi.org/10.1016/j.cellsig.2017.06.017. PMid:28687494.

Gouazé-Andersson V, Yu JY, Kreitenberg AJ, Bielawska A, Giuliano AE, Cabot MC. Ceramide and glucosylceramide upregulate expression of the multidrug resistance gene MDR1 in cancer cells. Biochim Biophys Acta. 2007;1771(12):1407-17. http://dx.doi.org/10.1016/j.bbalip.2007.09.005. PMid:18035065.

Sandoval C, Vásquez B, Souza-Mello V, Adeli K, Mandarim-de-Lacerda C, Sol M. Morphoquantitative effects of oral β-carotene supplementation on liver of C57BL/6 mice exposed to ethanol consumption. Int J Clin Exp Pathol. 2019;12(5):1713-22. PMid:31933989.

Leite C, Starosta RT, Trindade EN, et al. Elastic fibers density: a new parameter of improvement of NAFLD in bariatric surgery patients. Obes Surg. 2020;30(10):3839-46. http://dx.doi.org/10.1007/s11695-020-04722-x. PMid:32451920.

Leite C, Starosta RT, Trindade EN, Trindade MRM, Álvares-da-Silva MR, Cerski CTS. Corrected integrated density: a novel method for liver elastic fibers quantification in chronic hepatitis C. Surg Exp Pathol. 2020;3(1):4. http://dx.doi.org/10.1186/s42047-020-0055-6.

Mendaçolli PJ, Brianezi G, Schmitt JV, Marques ME, Miot HA. Nuclear morphometry and chromatin textural characteristics of basal cell carcinoma. An Bras Dermatol. 2015;90(6):874-8.

Yang W, Tian R, Xue T. Nuclear shape descriptors by automated morphometry may distinguish aggressive variants of squamous cell carcinoma from relatively benign skin proliferative lesions: a pilot study. Tumour Biol. 2015;36(8):6125-31. http://dx.doi.org/10.1007/s13277-015-3294-5. PMid:25753477.

Mello MR, Metze K, Adam RL, et al. Phenotypic subtypes of acute lymphoblastic leukemia associated with different nuclear chromatin texture. Anal Quant Cytol Histol. 2008;30(2):92-8. PMid:18561745.

Patel K. Noninvasive tools to assess liver disease. Curr Opin Gastroenterol. 2010;26(3):227-33. http://dx.doi.org/10.1097/MOG.0b013e3283383c68. PMid:20179592.

Hall AR, Le H, Arnold C, et al. Aluminum exposure from parenteral nutrition: early bile canaliculus changes of the hepatocyte. Nutrients. 2018;10(6):723. http://dx.doi.org/10.3390/nu10060723. PMid:29867048.

Takemura A, Izaki A, Sekine S, Ito K. Inhibition of bile canalicular network formation in rat sandwich cultured hepatocytes by drugs associated with risk of severe liver injury. Toxicol In Vitro. 2016;35:121-30. http://dx.doi.org/10.1016/j.tiv.2016.05.016. PMid:27256767.

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-5. http://dx.doi.org/10.1038/nmeth.2089. PMid:22930834.

Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: challenges and opportunities. Med Image Anal. 2016;33:170-5.

Barsoum I, Tawedrous E, Faragalla H, Yousef GM. Histo-genomics: digital pathology at the forefront of precision medicine. Diagnosis. 2019;6(3):203-12.

Li MK, Crawford JM. The pathology of cholestasis. Semin Liver Dis. 2004;24(1):21-42. http://dx.doi.org/10.1055/s-2004-823099. PMid:15085484.

Yildiz Y, Hoffmann P, Vom Dahl S, et al. Functional and genetic characterization of the non-lysosomal glucosylceramidase 2 as a modifier for Gaucher disease. Orphanet J Rare Dis. 2013;8(1):151. http://dx.doi.org/10.1186/1750-1172-8-151. PMid:24070122.

Mistry PK, Liu J, Sun L, et al. Glucocerebrosidase 2 gene deletion rescues type 1 Gaucher disease. Proc Natl Acad Sci USA. 2014;111(13):4934-9. http://dx.doi.org/10.1073/pnas.1400768111. PMid:24639522.

Downloads

Published

2021-08-30

Issue

Section

Original Article

How to Cite

Tzovenos Starosta, R. ., Siebert, M. ., Pinto e Vairo, F. ., Lafaiete de Lima Costa, B. ., Tomaso Ponzoni, C., Doederlein Schwartz, I. V. ., & Schmidt Cerski, C. T. . (2021). Histomorphometric analysis of liver biopsies of treated patients with Gaucher disease type 1. Autopsy and Case Reports, 11, e2021306. https://doi.org/10.4322/acr.2021.306