Potentially pathogenic bacteria isolated from neglected air and surfaces in hospitals

Authors

  • Mayk Teles de Oliveira Universidade Federal de Goias Ringgold standard institution - Faculty of Pharmacy Goiania, GO Brazi
  • Lorranny Mayara Silva Cunha Research Laboratory of Medicines and Food Microbiology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
  • Fernanda Cardoso Cruz Research Laboratory of Medicines and Food Microbiology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
  • Nathany Kelly Ribeiro Batista Research Laboratory of Medicines and Food Microbiology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
  • Eric de Souza Gi Research Laboratory of Pharmaceutical and Environmental Analysis, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
  • Virgínia Farias Alves Research Laboratory of Medicines and Food Microbiology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
  • Maria Teresa Freitas Bara Research Laboratory of Natural Products, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
  • Ieda Maria Sapateiro Torres Universidade Federal de Goias Ringgold standard institution Rua Samuel Morse, 21 Apto 1304, Ed. Sky Life, Goiania 74835080 Brazil https://orcid.org/0000-0001-8407-627X

DOI:

https://doi.org/10.1590/s2175-97902020000418989

Keywords:

Drug resistance. Environmental monitoring. Cross infection. Air quality

Abstract

Hospital infections (HI) are a serious public health problem in many countries. Several studies have identified strains correlating to surgical site infections, many with multi-resistance. The goals of this study was to quantify, to identify and to verify the resistance profile of microorganisms collected at two hospitals settings, and to alert health professionals how environmental contamination can influence hospital infection rates. For air sampling in operating rooms, intensive care unit and materials sterilization center, the impaction method (Spin Air, IUL®) and passive sedimentation were used. For the isolation of bacteria on surfaces and uniforms contact plates (RODAC®) were used. Identification of the microorganisms was performed using Vitek® 2 Systems. The antibiograms were conducted according to the disk diffusion method recommended by CLSI. The surgical center of hospital B presented more than 500 CFU/m3 in aerial microbial load. In the aerial microbiota of the sampled areas of both hospitals, M. luteus, S. haemolyticus and S. hominis spp hominis were the prevalent microorganisms, with a percentage greater than 30%. On the surfaces and uniforms there was a prevalence of M. luteus (40%) and S. hominis spp hominis (20%) among others, and some of the resistant strains were isolated from environments with microbial load within the recommended limits.

Downloads

Download data is not yet available.

References

Agodi A, Auxilia F, Barchitta M, Cristina ML, D'Alessandro D, Mura I, et al. Operating theatre ventilation systems and microbial air contamination in total joint replacement surgery: Results of the GISIO-ISChIA study. J Hosp Infect. 2015;90(3):213-9. doi:10.1016/j.jhin.2015.02.014.

» https://doi.org/10.1016/j.jhin.2015.02.014

Arslan F, Saltoglu N, Mete B, Mert A. Recurrent Staphylococcus warnerii prosthetic valve endocarditis: a case report and review. Ann Clin Microbiol Antimicrob. 2011;10:14. doi:10.1186/1476-0711-10-14.

» https://doi.org/10.1186/1476-0711-10-14

Baughman A, Arens EA. Indoor Humidity and Human Health--Part I: Literature Review of Health Effects of Humidity-Influenced Indoor Pollutants. ASHRAE Trans. 1996;102 Part 1:193-211.

Birgand G, Toupet G, Rukly S, Antoniotti G, Deschamps MN, Lepelletier D, et al. Air contamination for predicting wound contamination in clean surgery: A large multicenter study. Am J Infect Control. 2015;43(5):516-21. doi:10.1016/j.ajic.2015.01.026.

» https://doi.org/10.1016/j.ajic.2015.01.026

Cabo Verde S, Almeida SM, Matos J, Guerreiro D, Meneses M, Faria T, et al. Microbiological assessment of indoor air quality at different hospital sites. Res Microbiol. 2015;166(7):557-63. doi:10.1016/j.resmic.2015.03.004.

» https://doi.org/10.1016/j.resmic.2015.03.004

Cabrera-Cancio MR. Infections and the Compromised Immune Status in the Chronically Critically Ill Patient: Prevention Strategies. Respir Care. 2012;57(6):979-92. doi:https://doi.org/10.4187/respcare.01621.

» https://doi.org/10.4187/respcare.01621

Chemaly RF, Simmons S, Dale C, Ghantoji SS, Rodriguez M, Gubb J, et al. The role of the healthcare environment in the spread of multidrug-resistant organisms: update on current best practices for containment. Ther Adv Infect Dis. 2014;2(2-3):79-90. doi:10.1177/2049936114543287.

» https://doi.org/10.1177/2049936114543287

CLSI. M100-S25 Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. 2015.

Cornejo-Juárez P, Vilar-Compte D, Pérez-Jiménez C, Ñamendys-Silva SA, Sandoval-Hernández S, Volkow-Fernández P. The impact of hospital-acquired infections with multidrug-resistant bacteria in an oncology intensive care unit. Int J Infect Dis. 2015;31:31-4. doi:10.1016/j.ijid.2014.12.022.

» https://doi.org/10.1016/j.ijid.2014.12.022

Creamer E, Shore AC, Deasy EC, Galvin S, Dolan A, Walley N, et al. Air and surface contamination patterns of meticillin-resistant Staphylococcus aureus on eight acute hospital wards. J Hosp Infect. 2014;86(3):201-8. doi:10.1016/j.jhin.2013.12.005.

» https://doi.org/10.1016/j.jhin.2013.12.005

Dancer SJ. The role of environmental cleaning in the control of hospital-acquired infection. J Hosp Infect. 2009;73(4):378-85. doi:10.1016/j.jhin.2009.03.030.

» https://doi.org/10.1016/j.jhin.2009.03.030

Department of Health/Estates and Facilities Division. Health Technical Memorandum 03-01: Specialised ventilation for healthcare premises. Part A - Design and installation. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/144029/HTM_03-01_Part_A.pdf; 2007.

» https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/144029/HTM_03-01_Part_A.pdf

Emuren K, Ordinioha B. Microbiological assessment of indoor air quality at different sites of a tertiary hospital in South-South Nigeria. Port Harcourt Med J. 2016;10(2):79. doi:10.4103/0795-3038.189459.

» https://doi.org/10.4103/0795-3038.189459

Flores-Carrero A, Labrador I, Paniz-Mondolfi A, Peaper DR, Towle D, Araque M. Nosocomial outbreak of extended-spectrum ß-lactamase-producing Enterobacter ludwigii co-harbouring CTX-M-8, SHV-12 and TEM-15 in a neonatal intensive care unit in Venezuela. J Glob Antimicrob Resist. 2016;7:114-8. doi:10.1016/j.jgar.2016.08.006.

» https://doi.org/10.1016/j.jgar.2016.08.006

Galvin S, Dolan A, Cahill O, Daniels S, Humphreys H. Microbial monitoring of the hospital environment: why and how? J Hosp Infect. 2012;82(3):143-51. doi:10.1016/j.jhin.2012.06.015.

» https://doi.org/10.1016/j.jhin.2012.06.015

Kumari DNP, Haji TC, Keer V, Hawkey PM, Duncanson V, Flower E. Ventilation grilles as a potential source of methicillin-resistant Staphylococcus aureus causing an outbreak in an orthopaedic ward at a district general hospital. J Hosp Infect. 1998;39(2):127-33. doi:10.1016/S0195-6701(98)90326-7.

» https://doi.org/10.1016/S0195-6701(98)90326-7

Litvinov N, da Silva MTN, van der Heijden IM, Graça MG, Marques de Oliveira L, Fu L, et al. An outbreak of invasive fusariosis in a children's cancer hospital. Clin Microbiol Infect. 2015;21(3):268.e1-268.e7. doi:10.1016/j.cmi.2014.09.004.

» https://doi.org/10.1016/j.cmi.2014.09.004

Miltiadous G, Elisaf M. Native valve endocarditis due to Micrococcus luteus: a case report and review of the literature. J Med Case Rep. 2011;5:251. doi:10.1186/1752-1947-5-251.

» https://doi.org/10.1186/1752-1947-5-251

Munoz-Price LS, Arheart KL, Mills JP, Cleary T, DePascale D, Jimenez A, et al. Associations between bacterial contamination of health care workers' hands and contamination of white coats and scrubs. Am J Infect Control. 2012;40(9):e245-8. doi:10.1016/j.ajic.2012.03.032.

» https://doi.org/10.1016/j.ajic.2012.03.032

Neidell MJ, Cohen B, Furuya Y, Hill J, Jeon CY, Glied S, et al. Costs of healthcare- and community-associated infections with antimicrobial-resistant versus antimicrobial-susceptible organisms. Clin Infect Dis. 2012;55(6):807-15. doi:10.1093/cid/cis552.

» https://doi.org/10.1093/cid/cis552

Oudiz RJ, Widlitz A, Beckmann XJ, Camanga D, Alfie J, Brundage BH, et al. Micrococcus-associated central venous catheter infection in patients with pulmonary arterial hypertension. Chest. 2004;126(1):90-4. doi:10.1378/chest.126.1.90.

» https://doi.org/10.1378/chest.126.1.90

Park DU, Yeom JK, Lee WJ, Lee KM. Assessment of the levels of airborne bacteria, gram-negative bacteria, and fungi in hospital lobbies. Int J Environ Res Public Health. 2013;10(2):541-55. doi:10.3390/ijerph10020541.

» https://doi.org/10.3390/ijerph10020541

Pereira EM, Schuenck RP, Aranha Nouér S, Santos KRN dos. Methicillin-resistant Staphylococcus lugdunensis carrying SCCmec type V misidentified as MRSA. Brazilian J Infect Dis. 2011;15(3):293-5. doi:10.1016/S1413-8670(11)70192-1.

» https://doi.org/10.1016/S1413-8670(11)70192-1

Pinheiro L, Brito CI, Oliveira A de, Pereira VC, Cunha M de LR de S da. Staphylococcus epidermidis and Staphylococcus haemolyticus: detection of biofilm genes and biofilm formation in blood culture isolates from patients in a Brazilian teaching hospital. Diagn Microbiol Infect Dis. 2016;86(1):11-4. doi:10.1016/j.diagmicrobio.2016.06.006.

» https://doi.org/10.1016/j.diagmicrobio.2016.06.006

Prussin AJ, Marr LC. Sources of airborne microorganisms in the built environment. Microbiome 2015;3:78. doi:10.1186/s40168-015-0144-z.

» https://doi.org/10.1186/s40168-015-0144-z

Soldera J, Nedel WL, Cardoso PRC, D'Azevedo PA. Bacteremia due to Staphylococcus cohnii ssp. urealyticus caused by infected pressure ulcer: case report and review of the literature. Sao Paulo Med J. 2013;131(1):59-61.

Tang C-S, Wan G-H, Keer V, Hawkey P, Duncanson V. Air quality monitoring of the post-operative recovery room and locations surrounding operating theaters in a medical center in Taiwan. PLoS One. 2013;8(4):e61093. doi:10.1371/journal.pone.0061093.

» https://doi.org/10.1371/journal.pone.0061093

Veysseyre F, Fourcade C, Lavigne J-P, Sotto A. Bacillus cereus infection: 57 case patients and a literature review. Médecine Mal Infect. 2015;45(11-12):436-40. doi:10.1016/j.medmal.2015.09.011.

» https://doi.org/10.1016/j.medmal.2015.09.011

Voineagu L, Braga V, Botnarciuc M, Barbu A, Tataru M. Emergence of staphylococcus hominis strains in general infections. ARS Medica Tomitana. 2012;18(2):80-2. doi:10.2478/v10307-012-0016-8.

» https://doi.org/10.2478/v10307-012-0016-8

Wan G-H, Chung F-F, Tang C-S. Long-term surveillance of air quality in medical center operating rooms. Am J Infect Control. 2011;39(4):302-8. doi:10.1016/j.ajic.2010.07.006.

Downloads

Published

2022-11-09

Issue

Section

Original Article

How to Cite

Potentially pathogenic bacteria isolated from neglected air and surfaces in hospitals. (2022). Brazilian Journal of Pharmaceutical Sciences, 57. https://doi.org/10.1590/s2175-97902020000418989