Optimization of the ellagic acid synthesis process at the bioreactor level using non-conventional yeasts

Authors

  • Rafael Madrigal-Chávez Tecnológico Nacional de México, Instituto Tecnológico de Morelia, México
  • Kristal Ruíz-Pompa Tecnológico Nacional de México, Instituto Tecnológico de Morelia, México
  • Anahí Márquez-López División de Estudios de Posgrado de la Facultad de Química de la Universidad Michoacana de San Nicolás de Hidalgo, México
  • Dora Cecilia Valencia Flores Tecnológico Nacional de México, Instituto Tecnológico de Morelia, México
  • Ma. Del Carmen Chávez-Parga División de Estudios de Posgrado de la Facultad de Química de la Universidad Michoacana de San Nicolás de Hidalgo, México
  • Juan Carlos González-Hernández Tecnológico Nacional de México, Instituto Tecnológico de Morelia, México https://orcid.org/0000-0003-2558-5108

DOI:

https://doi.org/10.1590/s2175-97902023e21508

Keywords:

Ellagic acid, Yeasts, Bioreactor, Optimization

Abstract

Ellagic acid (EA) is a phenolic biomolecule. For its biosynthesis, a source of ellagitannins is required, such as strawberries and yeasts, as precursors of the tannase and β-glucosidase enzymes responsible for hydrolysis of ellagitannins. Two experimental mixture designs were applied., varying the yeast concentration and the number of ellagitannins in the culture medium, evaluating the enzymatic activity and ellagic acid biosynthesis. Aiming to find the optimal compositions of the non-conventional yeasts assessed in the research to biosynthesize ellagic acid feasibly and efficiently using a response surface performing the statistical analysis in the StatGraphics® program for obtaining a higher yield and optimizing the ellagic acid synthesis process, the results indicate that the strains Candida parapsilosis ITM LB33 and Debaryomyces hansenii ISA 1510 have a positive effect on the synthesis of ellagic acid, since as its concentration increases in the mixture the concentration of ellagic acid in the medium also increases; on the other hand, the addition of Candida utilis ITM LB02 causes a negative effect, resulting in the compositions of 0.516876, 0.483124 and 2.58687E-9 respectively, for a treatment under the same conditions, an optimal value of ellagic acid production would be obtained. With an approximate value of 7.33036 mg/mL.

Downloads

Download data is not yet available.

References

Aaby K, Mazur S, Nes A, Skrede G. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem. 2012;132(1):86-97.

Aguilar J, Espinoza M, Cabanillas J, Ávila I, García A, Julca J, et al. Evaluación de la cinética de crecimiento de Saccharomyces cerevisiae utilizando un medio de cultivo a base de melaza de caña y suero lácteo. Agroin Sci. 2015;5(1):37-47.

Aguilera-Carbó A. Producción de ácido elágico: estudios enzimáticos (Doctoral dissertation, Tesis de Doctorado. Universidad Autónoma Metropolitana, México City, México). 2009

Alejandro GNM. Cuantificación de fenoles y flavonoides totales en extractos naturales. Universidad Autónoma de Querétaro. Revista Académica. 2009:1-4.

Ascacio-Valdés JA, Aguilera-Carbó A, Rodríguez-Herrera R, Aguilar-González C. Análisis de ácido elágico en algunas plantas del semidesierto mexicano. Rev Mex Cienc Farm. 2013;44(2):36-40.

Bala I, Bhardwaj V, Hariharan S, Kumar MNVR. Analytical methods for assay of ellagic acid and its solubility studies. J Pharm Biomed Anal. 2006;40(1): 206-10.

Cruz-Antonio FV, Saucedo-Pompa S, Martinez-Vazquez G, Aguilera A, Rodríguez R, Aguilar CN. Propiedades químicas e industriales del ácido elágico. Revista Científica de La Universidad Autónoma de Coahuila. 2010;2(3).

De la Cruz R, Aguilera-Carbó A, Prado-Barragán A, Rodríguez-Herrera R, Contreras-Esquivel J, Aguilar C. Biodegradación Microbiana de Elagitaninos. Bio Tecnol. 2011;15(3):11-18.

Doi S, Shinmyo A, Enatsu T, Terui G. Growth-associated tannase production by a strain of Aspergillus oryzae J Ferment Technol. 1973; 51:768-774.

González-Hernández JC, Alcántar-Covarrubias MA, Cortés-Rojo C. Producción de trehalosa a partir de levaduras no-convencionales. Rev Mex Ing Quím. 2015;14(1):11-23.

Han DH, Lee MJ, Kim JH. Antioxidant and apoptosis-inducing activities of ellagic acid. Anticancer Res. 2006;26(5A):3601-3606.

Huang W, Niu H, Li Z, He Y, Gong W, Gong G. Optimization of ellagic acid production from ellagitannins by co-culture and correlation between its yield and activities of relevant enzymes. Bioresour Tech. 2008;99(4):769-775.

Isaza JH, Veloza LA, Ramírez LS, Guevara CA. Estimación espectrofotométrica de taninos hidrolizables y condensados en plantas melastomatáceas. Sci Tech. 2007; 13(33).

Kengen SW, Luesink E J, Stams AJ, Zehnder AJ. Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus Eur J Biochem. 1993;213(1):305-312.

Lee JE, Talcott TS. Fruit maturity and juice extraction influence ellagic acid derivatives and other antioxidant polyphenolics in muscadine grapes. J Agric Food Chem. 2004;52(2):361-366.

Márquez-López A, Ramírez-Conejo JD, Chávez-Parga MC, Valencia Flores DC, Zamudio Jaramillo MA, González-Hernández JC. Comparative analysis of enzymatic activity of tannase in non-conventional yeasts to produce ellagic acid. Food Sci Technol. 2020;40(3):557-563.

Miller GL. Modified DNS method for reducing sugars. Anal Chem. 1959;31(3):426-428.

Moccia F, Flores-Gallegos AC, Chávez-González ML, Sepúlveda L, Marzorati S, Verotta L, et al. Ellagic acid recovery by solid-state fermentation of pomegranate wastes by Aspergillus niger and Saccharomyces cerevisiae: A comparison. Molecules. 2019;24(20):3689.

Ramírez-Conejo JD. Análisis comparativo de la actividad enzimática en levaduras no convencionales para la producción de ácido elágico y evaluación a nivel biorreactor (Ingeniero Bioquímico). Instituto Tecnológico de Morelia. 2019.

Rodríguez-Durán LV, Valdivia-Urdiales B, Contreras-Esquivel JC, Rodríguez-Herrera R, Aguilar CN. Química y Biotecnología de la Tanasa. Acta Quím Mex. 2010;2(4):1-10.

Sharma S, Bhat TK, Dawra RK. A spectrophotometric method for assay of tannase using rhodanine. Anal Biochem. 2000;279(1):85-9.

Sepúlveda L, Buenrostro-Figueroa JJ, Ascacio-Valdés JA, Aguilera-Carbó AF, Rodríguez-Herrera R, Contreras-Esquivel JC, et al. Submerged culture for production of ellagic acid from pomegranate husk by Aspergillus niger GH1 Micol Aplicada Intern. 2014;26(2):27-35.

Sepúlveda L, Laredo-Alcalá EI, Genisheva Z, Buenrostro-Figueroa JJ. Producción biotecnológica de ácido elágico a partir de residuos de naranaja. XVII Congreso Nacional de Biotecnología y Bioingeniería. 2017.

Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol. 1982;43(4):777-80.

Turner BL, Hopkins DW, Haygarth PM, Ostle N. β-Glucosidase activity in pasture soils. Appl Soil Ecol. 2002;20(2):157-162.

Vattem AD, Shetty K. Ellagic acid production and phenolic antioxidant activity in cranberry pomace mediated by Lentinus edodes using the solid-state system. Process Biochem. 2003;39(3):367-379.

Vázquez-Flores A, Álvarez-Parrilla E, López-Díaz J, Wall-Medrano A. Hydrolysable and condensed tannins: chemistry, advantages, and disadvantages of their intake. Tecnociencia Chihuahua. 2012; 5:84-94.

Williner RM, Pirovani EM, Guemes RD. The ellagic acid content in strawberries of different cultivars and ripening stages. J Sci Food Agric. 2003;83(8):842-845.

Downloads

Published

2023-05-08

Issue

Section

Original Article

How to Cite

Optimization of the ellagic acid synthesis process at the bioreactor level using non-conventional yeasts. (2023). Brazilian Journal of Pharmaceutical Sciences, 59, e21508. https://doi.org/10.1590/s2175-97902023e21508