Neuroprotective potential of the Amazonian fruits Euterpe oleracea Mart. and Paullinia cupana Kunth

Authors

  • Gabriel Nóbrega da Costa Postgraduate Program in Pharmacology, Department of Pharmacology, Biological Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
  • Letícia Yoshitome Queiroz Postgraduate Program in Pharmacology, Department of Pharmacology, Biological Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil https://orcid.org/0000-0002-4221-3544
  • Isaque Nilton dos Santos Postgraduate Program in Pharmacology, Department of Pharmacology, Biological Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
  • Helena Iturvides Cimarosti Postgraduate Program in Pharmacology, Department of Pharmacology, Biological Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Postgraduate Program in Neuroscience, Biological Sciences Center, UFSC, Florianópolis, Santa Catarina, Brazil

DOI:

https://doi.org/10.1590/s2175-97902023e22381

Keywords:

Acai, Anti-inflammatory, Antioxidant, Guarana, Neurodegenerative diseases

Abstract

Acai (Euterpe oleracea Mart.) and guarana (Paullinia cupana Kunth) are native species from the Amazon Forest that in folk medicine are used to treat several diseases due to their anti-inflammatory and antioxidant properties. This review brings together findings from different studies on the potential neuroprotective effects of acai and guarana, highlighting the importance of the conservation and sustainable exploitation of the Amazon Forest. A bibliographic survey in the PubMed database retrieved indexed articles written in English that focused on the effects of acai and guarana in in vitro and in vivo models of neurodegenerative diseases. In general, treatment with either acai or guarana decreased neuroinflammation, increased antioxidant responses, ameliorated depression, and protected cells from neurotoxicity mediated by aggregated proteins. The results from these studies suggest that flavonoids, anthocyanins, and carotenoids found in both acai and guarana have therapeutic potential not only for neurodegenerative diseases, but also for depressive disorders. In addition, acai and guarana show beneficial effects in slowing down the physiological aging process. However, toxicity and efficacy studies are still needed to guide the formulation of herbal medicines from acai and guarana.

Downloads

Download data is not yet available.

References

Ahmed T, Gilani AH, Abdollahi M, Daglia M, Nabavi SF, Nabavi SM. Berberine and neurodegeneration: a review of literature. Pharmacol Rep. 2015;67(5):970-979.

Ajit D, Simonyi A, Li R, Chen Z, Hannink M, Fritsche KL, et al. Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes. Neurochem Int. 2016;97:49-56.

Algarve TD, Assmann CE, Cadoná FC, Machado AK, Manica-Cattani MF, Sato-Miyata Y. Guarana improves behavior and inflammatory alterations triggered by methylmercury exposure: an in vivo fruit fly and in vitro neural cells study. Environ Sci Pollut Res Int. 2019;26(15):15069-15083.

Alzheimer’s Association. 2021 Alzheimer’s disease facts and figures. Alzheimers. Dement. 2021;17(3):327-406.

Angelova PR. Sources and triggers of oxidative damage in neurodegeneration. Free Radic Biol Med. 2021;173:52-63.

Antonelli-Ushirobira TM, Kaneshima EN, Gabriel M, Audi EA, Marques LC, Mello JCP. Acute and subchronic toxicological evaluation of the semipurified extract of seeds of guaraná (Paullinia cupana) in rodents. Food Chem Toxicol. 2010;48(7):1817-1820.

Bittencourt LS, Zeidán-Chuliá F, Yatsu FKJ, Schnorr CE, Moresco KS, Kolling EA, et al. Guarana (Paullinia cupana Mart.) prevents β-amyloid aggregation, generation of Advanced Glycation-end Products (AGEs), and acrolein-induced cytotoxicity on human neuronal-like cells. Phytother Res. 2014;28(11):1615-1624.

Blanchard JW, Victor MB, Tsai LH. Dissecting the complexities of Alzheimer disease with in vitro models of the human brain. Nat Rev Neurol. 2022;18:25-39.

Boasquívis PF, Silva GMM, Paiva FA, Cavalcanti RM, Nunez CV, de Paula Oliveira R. Guarana (Paullinia cupana) extract protects Caenorhabditis elegans models for Alzheimer disease and Huntington disease through activation of antioxidant and protein degradation pathways. Oxid Med Cell Longev. 2018;2018:1-16.

Brunquell J, Morris S, Snyder A, Westerheide SD. Coffee extract and caffeine enhance the heat shock response and promote proteostasis in an HSF-1-dependent manner in Caenorhabditis elegans. Cell Stress Chaperones. 2018;23(1):65-75.

Bruzelius E, Scarpa J, Zhao Y, Basu S, Faghmous JH, Baum A. Huntington’s disease in the United States: Variation by demographic and socioeconomic factors. Mov Disord. 2019;34(6):858-865.

Carey AN, Miller MG, Fisher DR, Bielinski DF, Gilman CK, Poulose SM, et al. Dietary supplementation with the polyphenol-rich açaí pulps (Euterpe oleracea Mart. and Euterpe precatoria Mart.) improves cognition in aged rats and attenuates inflammatory signaling in BV-2 microglial cells. Nutr Neurosci. 2017;20(4):238-245.

Dall’ Acqua YG, Cunha-Júnior LC, Nardini V, Lopes VG, Pessoa JDC, Teixeira GHA. Discrimination of Euterpe Oleracea MART. (acai) and Euterpe edulis Mart. (jucara) intact fruit using near-infrared (NIR) spectroscopy and linear discriminant analysis. J Food Process Preserv. 2015;39(6):2856-2865.

Dalonso N, Petkowicz CLO. Guaranapowderpolysaccharides: characterisation and evaluation of the antioxidant activity of a pectic fraction. Food Chem. 2012;134(4):1804-1812.

da Silva MACN, do Desterro MSBN, de Carvalho JE. Traditional uses, phytochemistry, pharmacology and anticancer activity of açaí (Euterpe oleracea Mart): a narrative review. Curr Tradit Med. 2021;7(5):41-62. https://doi.org/10.2174/2215083806999200508081308

» https://doi.org/10.2174/2215083806999200508081308

da Silva VSV, Bisen-Hersh E, Yu Y, Cabral ISR, Nardini V, Culbreth M, et al. Anthocyanin-rich açaí (Euterpe oleracea Mart.) extract attenuates manganese-induced oxidative stress in rat primary astrocyte cultures. J Toxicol Environ Health - A. 2014;77(7):390-404.

da Silveira TFF, Cristianini M, Kuhnle GG, Ribeiro AB, Filho JT, Godoy HT. Anthocyanins, non-anthocyanin phenolics, tocopherols and antioxidant capacity of açaí juice (Euterpe oleracea) as affected by high pressure processing and thermal pasteurization. Innovative Food Sci Emerging Technol. 2019;55(supl C):88-96.

de Oliveira DM, Barreto G, Galeano P, Romero JI, Holubiec MI, Badorrey MS, et al. Paullinia cupana Mart. var. Sorbilis protects human dopaminergic neuroblastoma SH-SY5Y cell line against rotenone-induced cytotoxicity. Hum Exp Toxicol. 2011;30(9):1382-1391.

de Oliveira MSP, Schwartz G. Açaí- Euterpe oleracea In: Rodrigues S, Silva EO, Brito ES, editors. Exotic Fruits. 1st ed. Academic Press; 2018. p. 1-5.

de Oliveira NKS, Almeida MRS, Pontes FMM, Barcelos MP, de Paula SCHT, Rosa JMC, et al. Antioxidant effect of flavonoids present in Euterpe oleracea Martius and neurodegenerative diseases: a literature review. Cent Nerv Syst Agents Med Chem 2019;19(2):75-99.

de Souza DV, Pappis L, Bandeira TT, Sangoi GG, Fontana T, Rissi VB, et al. Açaí (Euterpe oleracea Mart.) presents anti-neuroinflammatory capacity in LPS-activated microglia cells. Nutr Neurosci . 2022;25(6):1-12.

Dhar R, Zhang L, Li Y, Rana MN, Hu Z, Li Z, et al. Electroacupuncture ameliorates cardiopulmonary bypass induced apoptosis in lung via ROS/Nrf2/NLRP3 inflammasome pathway. Life Sci. 2019:238:116962.

Dimitriadi M, Hart AC. Neurodegenerative disorders: insights from the nematode Caenorhabditis elegans Neurobiol Dis. 2010;40(1):4-11.

Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov. 2010;9(10):790-803.

Espinola EB, Dias RF, Mattei R, Carlini EA. Pharmacological activity of guarana (Paullinia cupana Mart.) in laboratory animals. J Ethnopharmacol. 1997;55(3):223-229.

Fonte V, Kapulkin WJ, Taft A, Fluet A, Friedman D, Link CD. Interaction of intracellular β amyloid peptide with chaperone proteins. Proc Natl Acad Sci. 2002;99(14):9439-9444.

Gage MC, Thippeswamy T. Inhibitors of Src Family Kinases, Inducible Nitric Oxide Synthase, and NADPH Oxidase as Potential CNS Drug Targets for Neurological Diseases. CNS Drugs. 2021;35(1):1-20.

Garzón GA, Narváez-Cuenca CE, Vincken JP, Gruppen H. Polyphenolic composition and antioxidant activity of acai (Euterpe oleracea Mart.) from Colombia. Food Chem . 2017;217:364-372.

Gruendler R, Hippe B, Sendula JV, Peterlin B, Haslberger AG. Nutraceutical approaches of autophagy and neuroinflammation in Alzheimer’s disease: A systematic review. Mol. 2020;25(24):1-21.

Gruszecki WI, Strzałka K. Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta - Mol Basis Dis. 2005;1740:108-115.

Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov . 2015;14(2):111-129.

Heinrich M, Dhanji T, Casselman I. Açai (Euterpe oleracea Mart.)-A phytochemical and pharmacological assessment of the species’ health claims. Phytochem Lett. 2011;4(1):10-21.

Henman AR. Guaraná (Paullinia cupana var. sorbilis): Ecological and social perspectives on an economic plant of the central amazon basin. J Ethnopharmacol . 1982;6(2):311-338.

Higgins JP, Tuttle TD, Higgins CL. Energy beverages: Content and safety. Mayo Clin Proc. 2010;85(11):1033-1041.

Kritsilis MV, Rizou S, Koutsoudaki P, Evangelou K, Gorgoulis V, Papadopoulos D. Ageing, cellular senescence and neurodegenerative disease. Int J Mol Sci. 2018;19(10):1-37.

Kulenkampff K, Wolf PAM, Sormanni P, Habchi J, Vendruscolo M. Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer and Parkinson diseases. Nat Rev Chem. 2021;5:277-294.

Kuri CMB. The guarana industry in Brazil. Int Bus Econ Res J. 2008;7(5):87-98.

Lima W, Carnevalijr L, Eder R, Costarosa L, Bacchi E, Seelaender M. Lipid metabolism in trained rats: effect of guarana (Mart.) supplementation. Clin Nutr. 2005;24(6):1019-1028.

Lin PY, Huang YC, Hung CF. Shortened telomere length in patients with depression: A meta-analytic study. J Psychiatr Res. 2016;76:84-93.

Lucas BF, Zambiazi RC, Costa JAV. Biocompounds and physical properties of açaí pulp dried by 1 different methods. LWT - Food Sci Technol. 2018,98:335-340.

Ma Z, Du B, Li J, Yang Y, Zhu F. An insight into anti-inflammatory activities and inflammation related diseases of anthocyanins: A review of both in vivo and in vitro investigations. Int J Mol Sci . 2021;22(20):11076.

Machado AK, Andreazza AC, da Silva TM, Boligon AA, do Nascimento V, Scola G, et al. Neuroprotective effects of açaí (Euterpe oleracea Mart.) against rotenone in vitro exposure. Oxid Med Cell Longevity. 2016;2016(8):1-14.

Machado FS, Marinho JP, Abujamra AL, Dani C, Quincozes-Santos A, Funchal C. Carbon tetrachloride increases the pro-inflammatory cytokines levels in different brain areas of Wistar rats: The protective effect of acai frozen pulp. Neurochem Res. 2015;40(9):1976-1983.

Marque ES, Froder JG, Carvalho JCT, Rosa PCP, Perazzo FF, Maistro EL. Evaluation of the genotoxicity of Euterpe oleraceae Mart. (Arecaceae) fruit oil (açaí), in mammalian cells in vivo Food and Chemical Toxicol. 2016;93:13-19.

Marques LLM, Ferreira EDF, de Paula MN, Klein T, de Mello JCP. Paullinia cupana: a multipurpose plant - a review. Rev Bras Farmacogn. 2019;29:77-110.

Martins DB, Mazzanti CM, Spanevello R, Schmatz R, Corrêa M, Stefanello N, et al. Cholinergic system of rats treated with vincristine sulphate and nandrolone decanoate. Comp Clin Pathol. 2011;20:33-37.

Matheus ME, Fernandes SBO, Silveira CS, Rodrigues VP, Menezes FS, Fernandes PD. Inhibitory effects of Euterpe oleracea Mart. on nitric oxide production and iNOS expression. J Ethnopharmacol . 2006;107(2):291-296.

Mathur S, Hoskins C. Drug development: Lessons from nature. Biomed Rep. 2017;6:612-614.

Matos CB, Sampaio P, Rivas AAA, Matos JCS, Hodges DG. Economic profile of two species of Genus der Euterpe, producers of açaí fruits, from the Pará and Amazonas States - Brazil. Int J Environ Agric Biotech. 2017;4(2):1822-1828.

Mattei R, Dias RF, Espı́nola EB, Carlini EA, Barros SBM. Guarana (Paullinia cupana): toxic behavioral effects in laboratory animals and antioxidant activity in vitro J Ethnopharmacol . 1998;60(2):111-116.

McColl G, Roberts BR, Pukala TL, Kenche VB, Roberts CM, Link CD, et al. Utility of an improved model of amyloid-beta (Aβ1-42) toxicity in Caenorhabditis elegans for drug screening for Alzheimer’s disease. Mol Neurodegener. 2012;7(57):1-9.

Mertens-Talcott SU, Rios J, Jilma-Stohlawetz P, Pacheco-Palencia LA, Meibohm B, Talcott ST, et al. Pharmacokinetics of anthocyanins and antioxidant effects after the consumption of anthocyanin-rich acai juice and pulp (Euterpe oleracea Mart) in Human Healthy Volunteers. J Agri Food Chem . 2008;56(17):7796-7802.

Mendes TMN, Murayama Y, Yamaguchi N, Sampaio GR, Fontes LCB, Torres EAFS, et al. Guarana (Paullinia cupana) catechins and procyanidins: Gastrointestinal/colonic bioaccessibility, Caco-2 cell permeability and the impact of macronutrients. J Funct Foods. 2019,55:352-361.

Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629-661.

Pacheco-Palencia LA, Duncan CE, Talcott ST. Phytochemical composition and thermal stability of two commercial acai species, Euterpe oleracea and Euterpe precatoria. Food Chem . 2009;115(4):1199-1205.

Pagliarussi RS, Freitas LAP, Bastos JK. A quantitative method for the analysis of xanthine alkaloids in Paullinia cupana (guarana) by capillary column gas chromatography. J Sep Sci. 2002;25(5-6):371-374.

Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris EH, et al. Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci U S A. 2008;105(4):1347-1352.

Peixoto H, Roxo M, Röhrig T, Richling E, Wang X, Wink M. Anti-aging and antioxidant potential of Paullinia cupana var. sorbilis: Findings in Caenorhabditis elegans indicate a new utilization for roasted seeds of guarana. Medicines. 2017;4(3):1-14.

Plotkin MJ, Balick MJ. Medicinal uses of South American palms. J Ethnopharmacol . 1984;10(2):157-179.

Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:1-21.

Pompeu DR, Silva EM, Rogez H. Optimisation of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using Response Surface Methodology. Bioresour Technol. 2009;100(23):6076-6082.

Portella RL, Barcelos RP, da Rosa EJF, Ribeiro EE, da Cruz IBM, Suleiman L, et al. Guaraná (Paullinia cupana Kunth) effects on LDL oxidation in elderly people: an in vitro and in vivo study. Lipids Health Dis. 2013;12(12):1-9.

Poulose SM, Bielinski DF, Carey A, Schauss AG, Shukitt- Hale B. Modulation of oxidative stress, inflammation, autophagy and expression of Nrf2 in hippocampus and frontal cortex of rats fed with açaí-enriched diets. Nutr Neurosci . 2017;20(5):305-315.

Poulose SM, Fisher DR, Bielinski DF, Gomes SM, Rimando AM, Schauss AG, et al. Restoration of stressor-induced calcium dysregulation and autophagy inhibition by polyphenol-rich açaí (Euterpe spp.) fruit pulp extracts in rodent brain cells in vitro. Nutr. 2014;30(7):853-862.

Renaud J, Nabavi SF, Daglia M, Nabavi SM, Martinoli MG. Epigallocatechin-3-Gallate, a promising molecule for Parkinson’s disease? Rejuvenation Res. 2015;18(3):257-269.

Réus GZ, Titus SE, Abelaira HM, Freitas SM, Tuon T, Quevedo J, et al. Neurochemical correlation between major depressive disorder and neurodegenerative diseases. Life Sci . 2016;158:121-129.

Ribeiro JC, Antunes LMG, Aissa AF, Darin JDC, de Rosso VV, Mercadante AZ, et al. Evaluation of the genotoxic and antigenotoxic effects after acute and subacute treatments with acai pulp (Euterpe oleracea Mart.) on mice using the erythrocytes micronucleus test and the comet assay. Mutat Res Genet Toxicol Environ Mutagen. 2010;695(1-2):22-28.

Rudnicka E, Napierała P, Podfigurna A, Męczekalski B, Smolarczyk R, Grymowicz M. The World Health Organization (WHO) approach to healthy ageing. Maturitas. 2020;139:6-11.

Saenjum C, Pattananandecha T, Nakagawa K. Antioxidative and Anti-Inflammatory Phytochemicals and Related Stable Paramagnetic Species in Different Parts of Dragon Fruit. Molecules. 2021,26(12):1-14.

Santana AL, Macedo GA. Health and technological aspects of methylxanthines and polyphenols from guarana: A review. J Funct Foods . 2018; 47:457-468.

Schauss AG, Wu X, Prior RL, Ou B, Patel D, Huang D, et al. Phytochemical and nutrient composition of the freeze-dried amazonian palm berry, Euterpe oleraceae Mart. (acai). J Agric Food Chem . 2006;54(22):8598-8603.

Schimpl FC, da Silva JF, Gonçalves JFC, Mazzafera P. Guarana: Revisiting a highly caffeinated plant from the Amazon. J Ethnopharmacol . 2013;150(1):14-31.

Shawki SM, Saad MA, Rahmo RM, Wadie W, El-Abhar HS. Liraglutide improves cognitive and neuronal function in 3-NP rat model of Huntington’s disease. Front Pharmacol. 2021;12:1-16.

Simpson DSA, Oliver PL. ROS generation in microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants. 2020;9(8):743.

Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Mol. 2019;24(8):1583-1603.

Smith N, Atroch AL. Guaraná’s journey from regional tonic to aphrodisiac and global energy drink. Evid -Based Complement Altern Med. 2007;7(3):279-282.

Souza-Monteiro JR, Arrifano GPF, Queiroz AIDG, Mello BSF, Custódio CS, Macêdo DS, et al. Antidepressant and antiaging effects of açaí (Euterpe oleracea Mart) in mice. Oxid Med Cell Longev . 2019;2019:1-16.

Spada PDS, de Souza GGN, Bortolini GV, Henriques JAP, Salvador M. Antioxidant, mutagenic, and antimutagenic activity of frozen fruits. J Med Food. 2008;11(1):144-151.

Subhramanyam CS, Wang C, Hu Q, Dheen ST. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol. 2019;94:112-120.

Teixeira CF, da Cruz IBM, Ribeiro EE, Pillar DM, Turra BO, Praia RS, et al. Safety indicators of a novel multi supplement based on guarana, selenium, and L carnitine: Evidence from human and red earthworm immune cells. Food Chem Toxicol . 2021,150:112066.

Tobouti PL, de Andrade TCM, Pereira TJ, Mussi MCM. Antimicrobial activity of copaiba oil: A review and a call for further research. Biomed Pharmacother. 2017;94:93-99.

Torma PCMR, Brasil AVS, Carvalho AV, Jablonski A, Rabelo TK, Moreira JCF, et al. Hydroethanolic extracts from different genotypes of açaí (Euterpe oleracea) presented antioxidant potential and protected human neuron-like cells (SH-SY5Y). Food Chem . 2017;222:94-104.

Ulbricht C, Brigham A, Burke D, Costa D, Giese N, Iovin R, et al. An evidence-based systematic review of Acai (Euterpe oleracea) by the natural standard research collaboration. J Diet Suppl. 2012;9(2):128-147.

Vance MC, Bui E, Hoeppner SS, Kovachy B, Prescott J, Mischoulon D, et al. Prospective association between major depressive disorder and leukocyte telomere length over two years. Psychoneuroendocrinology. 2018;90:157-164.

Veloso CF, Machado AK, Cadoná FC, Azzolin VF, Cruz IBM, Silveira AF. Neuroprotective effects of Guarana (Paullinia Cupana Mart) against vincristine in vitro exposure. J Prev Alzheimers Dis. 2017;5(1):65-70.

Vrbovska H, Babincova M. Comparative analysis of synthetic and nutraceutical antioxidants as possible neuroprotective agents. Pharmazie. 2016;71(12):724-726.

Wanzeler AMV, Júnior SMA, Gomes JT, Gouveia EHH, Henriques HYB, Chaves RH, et al. Therapeutic effect of andiroba oil (Carapa guianensis Aubl.) against oral mucositis:an experimental study in golden Syrian hamsters. Clin Oral Investig. 2018;22(5):2069-2079.

Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans. 2015;43(4):621-626.

Wong DYS, Musgrave IF, Harvey BS, Smid SD. Açaí (Euterpe oleraceae Mart) berry extract exerts neuroprotective effects against β-amyloid exposure in vitro Neurosci Lett. 2013;556:221-226.

World Health Organization. Dementia. [cited 2022 Sep 20]. Available from: Available from: https://www.who.int/news-room/fact-sheets/detail/dementia

» https://www.who.int/news-room/fact-sheets/detail/dementia

World Health Organization. Depression. [cited 2022 Jan 26]. Available from: Available from: https://www.who.int/news-room/fact-sheets/detail/depression

» https://www.who.int/news-room/fact-sheets/detail/depression

Yamaguti-Sasaki E, Ito LA, Canteli VCD, Ushirobira TMA, Ueda-Nakamura T, Dias Filho BP, et al. Antioxidant capacity and in vitro prevention of dental plaque formation by extracts and condensed tannins of Paullinia cupana. Molecules. 2007;12(8):1950-1963.

Yonekura L, Martins CA, Sampaio GR, Monteiro MP, Cesar LAM, Mioto BM, et al. Bioavailability of catechins from guaraná (Paullinia cupana) and its effect on antioxidant enzymes and other oxidative stress markers in healthy human subjects. Food Funct. 2016, 7(7):2970-2978.

Zamberlan DC, Arantes LP, Machado ML, da Silveira TL, da Silva AF, da Cruz IBM, et al. Guarana (Paullinia cupana Mart.) protects against amyloid-β toxicity in Caenorhabditis elegans through heat shock protein response activation. Nutr Neurosci . 2020;23(6):444-454.

Zeidán-Chuliá F, Gelain DP, Kolling EA, Rybarczyk-Filho JL, Ambrosi P, Resende ST, et al. Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. Oxid Med Cell Longev . 2013;2013:1-22.

Zhang K, Zhu S, Li J, Jiang T, Feng L, Pei J, et al. Targeting autophagy using small-molecule compounds to improve potential therapy of Parkinson’s disease. Acta Pharm Sin B. 2021;11(10):3015-3034.

Downloads

Published

2023-05-19

Issue

Section

Review

How to Cite

Neuroprotective potential of the Amazonian fruits Euterpe oleracea Mart. and Paullinia cupana Kunth. (2023). Brazilian Journal of Pharmaceutical Sciences, 59. https://doi.org/10.1590/s2175-97902023e22381