Endometrial prostaglandin F2α in vitro production and its modulation regarding dominant follicle position in cattle

Produção in vitro de PGF F2α endometrial e sua modulação referente ao folículo dominante em bovinos

Fabiana Fernandes BRESSAN1,2; Claudia Maria Bertan MEMBRIVE1,3; Marcelo Demarchi GOISSIS1; Vanessa Belentani MARQUES1; Pauline Martins da CUNHA1; Mario BINELLI1

1 Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Reprodução Animal, São Paulo – SP, Brazil
2 Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos da USP, Departamento de Medicina Veterinária, Pirassununga – SP, Brazil
3 Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Tecnológicas, Dracena – SP, Brazil

Abstract
Prostaglandin F2α (PGF2α) determines luteolysis in cattle, and the ability to manipulate its endogenous synthesis is indispensible for large-scale animal breeding. Estradiol (E2) and progesterone (P4) modulate several molecular pathways in endometrial cells, including the synthesis of PGF2α; however, its specific mechanisms are still not totally known. This study investigated the production in vitro and possible modulation of endometrial PGF2α due to a local effect of endogenous E2 in the ipsilateral uterine horn (UH) containing the dominant follicle (DF) or from P4 in ipsilateral horn containing the corpus luteum (CL). The PGF2α stimulators oxytocin (OT) and phorbol 12,13-dibutyrate (PDBu) were incubated with endometrial explants, and PGF2α content was measured. For that, cycling cows were synchronized, the development of DF and CL was examined by ultrasonography and on the seventh day of the estrous cycle, endometrial explants were collected and cultured in medium supplemented with 10-6 M PDBu or 10-6 M OT or non-supplemented. Media samples were collected immediately after treatment and 60 min later. Radioimmunoassay showed that the PGF2α content of the UH ipsilateral to the DF was 49% less than that of the contralateral UH (8.22 ± 0.95 vs. 12.24 ± 0.95 pg/mL/mg tissue, respectively; P < 0.01). However, the PGF2α levels did not differ between the UHs as a function of the CL position (9.46 ± 0.95 vs. 11 ± 0.95 pg/mL/mg; P > 0.05). The cellular stimulators promoted an increase in PGF2α synthesis (P < 0.02), and the effects differed among the animals (P < 0.04). The PGF2α production was higher in the explants treated with PDBu rather than OT (13.68 ± 1.16 vs. 10.01 ± 1.16 pg/mL/mg tissue, respectively; P < 0.05). In conclusion, PGF2α synthesis is modulated by the presence of the DF (local E2) but not the CL (local P4), and both PDBu and OT stimulated PGF2α synthesis.

Keywords: Cattle. Luteolysis. PGF2α synthesis. Reproductive physiology.

Resumo
A prostaglandina F2α (PGF2α) determina a luteólise em bovinos. A capacidade de manipular sua síntese endógena é indispensável para a produção animal em grande escala. O estradiol (E2) e a progesterona (P4) modulam diversas vias moleculares das células endometriais, incluindo a síntese de PGF2α; no entanto, pouco se sabe sobre seus mecanismos específicos. Este trabalho investigou a produção in vitro e a possível modulação da PGF2α endometrial devido a um efeito local do E2, endógeno no corno uterino ipsilateral ao folículo dominante (FD) ou da P4 no corno ipsilateral ao corpo lúteo (CL). Os estimuladores de PGF2α oxitocina (OT) e 12,23-dibutirato de forbol (PDBu) foram incubados com explantes endometriais, e o conteúdo de PGF2α foi mensurado. Para tal, vacas cíclicas foram sincronizadas, o desenvolvimento de FD e CL foi examinado por ultrassonografia, e no 17º dia do ciclo estral os explantes endometriais foram coletados e cultivados em meio ou suplementados com PDBu 10-6 M ou 10-6 M OT ou não-suplementado. As amostras de meio foram coletadas imediatamente após o tratamento e sessenta minutos depois. O radioimunoensaio mostrou que o conteúdo de PGF2α do UH ipsilateral ao FD foi 49% menor que o do contralateral UH (8.22 ± 0.95 vs. 12.24 ± 0.95 pg/mL/mg de tecido, respectivamente; P < 0.01). No entanto, os níveis de PGF2α não diferiram entre os cornos em função da posição do CL (9.46 ± 0.95 versus 11 ± 0.95 pg/mL/mg; P > 0.05). Os estimuladores celulares promoveram um aumento na síntese de PGF2α (P < 0.02), e os efeitos diferiram entre os animais (P < 0.04). A produção de PGF2α foi maior nos explantes tratados com PDBu em comparação à OT (13.68 ± 1.16 versus 10.01 ± 1.16 pg/mL/mg de tecido, respectivamente, P < 0.05). A conclusão obtida foi que a síntese de PGF2α é: modulada pela presença do FD (E2 local), mas não do CL (P4 local); e estimulada por PDBu e OT.

Introduction

In cattle, the reproductive cycle is determined by a well-coordinated set of physiological events. Luteolysis, one of these events, is characterized by the functional and morphological regression of the corpus luteum (CL) resulting in the decline in the plasma concentrations of progesterone (P₄), favoring the growth of the dominant follicle (Dₙ) and an increase in the serum concentrations of estradiol (E₂); hence, initiating an acute release of luteinizing hormone (LH) and ovulation. Prostaglandin F₂α (PGF₂α) is known to be the main luteolytic factor in cows, and it has been reported that its action on the CL is probably mediated by other factors such as immune and endothelial cells and pericytes. In this species, the occurrence of five to eight pulsatile releases of PGF₂α within an interval of two to three days determines luteolysis between days fifteen and nineteen of the estrous cycle (MCCracken et al., 1999; MEIDAN et al., 1999; SKARZynski; OKUDA, 2010).

The endometrial synthesis of PGF₂α results from a complex cascade of highly coordinated events involving endocrine factors such as estradiol (E₂), oxytocin (OT) and luteinizing hormone (LH). Molecularly, the arachidonic acid (AA) stored in the phospholipid membranes is the main primary precursor of prostaglandins (DIAz et al., 2002). In the classic model, oxytocin (OT), acting through its receptor on the endometrial cell membrane, activates a guanosine nucleotide-binding protein (G protein), which promotes the activation of phospholipase C (PLC) that cleaves phosphatidylinositol triphosphate into inositol triphosphate (IP₃) and diacylglycerol (DAG). IP₃ binds to receptors on the endoplasmic reticulum, promoting an increase in the cytoplasmic calcium concentration. DAG activates protein kinase C (PKC), a serine/threonine kinase that is dependent on calcium for activation. Activated PKC phosphorylates phospholipase A₂ (PLA₂). The IP₃-induced increase in cytosolic calcium stimulates the calcium-dependent PLA₂ activity, and PLA₂ preferentially cleaves the sn-2 position of phosphatidylcholine, releasing AA. The free AA is then converted into PGG₂ by the cyclooxygenase (COX, prostaglandin G/H synthase) enzyme. PGG₂ is converted into PGH₂ by a peroxidase and, finally, converted into PGF₂α by PGF synthase (WLODAWER et al., 1976; CLARK et al., 1991; BURNS et al., 1997; Gijón; Leslie, 1999).

Another PGF₂α stimulator is the phorbol ester PDBu (phorbol 12, 13 dibutyrate [PDBu]). Phorbol esters stimulate PKC activity, activates COX-2 gene expression and PGF₂α secretion via the mitogen-activated protein kinase (MAPK) pathway (ThATCHER et al., 2001). The abilities of PDBu and OT to stimulate PGF₂α synthesis in bovine endometrial tissue endometrial have been reported by Danet-Desnoyers et al. (1994); Mann (2001); Guzeloglu et al. (2004) and Rodriguez-Sallaberry et al. (2006).

The role of endogenous estradiol in this context is not fully understood. It was reported that E₂ is important for PGF₂α synthesis during bovine luteolysis and, therefore, for female reproductive physiology (KARSCH et al., 1970; IReland et al., 1984; VILLA-GODoy et al., 1985; HUGHes et al., 1987; ZHANG et al., 1991; Salfen et al., 1999), and it is also known that it exerts several other physiological roles in the organism (BERKANE et al., 2017; COOKE et al., 2017; ZENDEDEL et al., 2017). In cattle, E₂ administration between days 13 and 18 of the estrous cycle stimulates the production of 13,14-dihydro-15-keto-prostaglandin F₂α (PGFM), the main PGF₂α metabolite (LEMON, 1975; Bartol et al., 1981; KnICKERBOcker et al., 1986; ThATCHER et al., 1986; Larson et al., 1991). Bertan (2004) and collaborators compared the PGF₂α synthesis capacity after E₂ administration on days 15, 17 and 19 of the estrous cycle and observed that the magnitude of the E₂ response progressively increased during this period.

It is assumed that the triggering of PGF₂α synthesis by E₂ is dependent on a previous and current priming of the endometrium by several factors throughout the estrous cycle. With respect to the roles of E₂ on PGF₂α synthesis, several studies have reported that E₂ induces an increase in the numbers of endometrial OT receptors; hence, increasing the capacity of the endometrium to respond to OT (Beard; Lamming, 1994; Spencer et al., 1995; Berio et al., 2017).

Progesterone is produced in large amounts by the CL, and endometrial priming by P₄ is important for PGF₂α production (Vallet et al., 1990; Zhang et al., 1991; Pineda; Dooley, 2003). It was reported that in the absence of previous priming by progesterone, PGF₂α...
Brachiaria decumbens -6
uterine horns were dissected, endometrial explants from cows at the slaughterhouse, placed in ice and immediately brought to the laboratory (approximately 15 min). The estrous cycle, the uterine horns were collected from the 14, 15 and 16 of the estrus cycle. On the 17th follicular wave were observed ultrasonographically on days and occurrence of three-wave cycles. DFs from the second to induce DF ovulation, emergence of a new follicular wave received 0.15 mg of a synthetic GnRH analog IM (Fertagyl®) to induce estrus. Heat behavior was observed every 12 h for the subsequent five days. D0 of the estrus cycle was considered the day when estrus was observed. On D6, ultrasonographic examinations (Aloka SSD500, 7.5 MHz linear transducer) were performed, and females presenting with a DF > 7.5 mm received 0.15 mg of a synthetic GnRH analog IM (Fertagyl®) to induce DF ovulation, emergence of a new follicular wave and occurrence of three-wave cycles. DFs from the second follicular wave were observed ultrasonographically on days 14, 15 and 16 of the estrus cycle. On the 17th day of the estrous cycle, the uterine horns were collected from the cows at the slaughterhouse, placed in ice and immediately brought to the laboratory (approximately 15 min). The uterine horns were dissected, endometrial explants from both horns collected, and fragments of 80 – 100 mg of intercaruncular tissue incubated in borosilicate tubes containing 0.5 mL Krebs-Hensleit bicarbonate medium (KHB; 118 mM NaCl, 4.7 mM KCl, 2.56 mM CaCl2, 1.13 mM MgCl2, 25 mM NaHCO3, 1.15 mM NaH2PO4, 5.55 mM glucose, 20 mM Hepes, 0.013 mM phenol red; pH 7.4). The fragments were incubated for 1 h at 37°C and 40 rpm, washed twice with 0.5 mL KHB and again incubated for 1 h and washed. The samples were then incubated in 1 mL with the in vitro treatments: KHB (control), KHB supplemented with 10^{-6} M OT (Sigma Chemicals O-6379 reconstituted in acetic acid 5%, final concentration of 0.25 g/mL) or KHB supplemented with 10^{-6} M PDBu (Sigma Chemicals P-1269; reconstituted in ethanol at 1 mg/mL). The treatments were conducted in quadruplicate. The concentrations of both stimulators were based on previous reports (BURNS et al., 1997; ARNOLD et al., 2000). Aliquots (250 µL) of the culture medium were removed immediately after treatment administration (time 0) and again after 60 min of incubation. The PGF2α concentrations of these samples were analyzed using a radioimmunoassay as previously described (DANET-DESNOYERS et al., 1994) and average PGF2α production between time 0 and 60 was analyzed (DIF 60).

The PGF2α concentrations at times 0 and 60 were adjusted to pg/mL/mg of endometrial tissue. The intra-assay coefficients of variation for the radioimmunoassay for reference samples containing low (250 pg/mL), medium (1,000 pg/mL) and high concentrations (3,500 pg/mL) were 4.15%, 17.52% and 21.69%, respectively. The inter-assay coefficients of variation for the low, medium and high concentration reference samples were 1.98%, 18.16% and 26.77%, respectively.

**Statistical analysis**

Preliminary analysis demonstrated that data was not adequate regarding analysis of normality of residues (Shapiro-Wilk test, P < 0.01) and variance homogeneity (F test, P < 0.01). The data was converted to square roots and submitted to variance analysis. The difference between the PGF2α concentrations at times 0 and 60 (DIF 60) was the dependent variable, and the independent variables were: animal, uterine horn (ipsi- or contralateral to DF or CL), in vitro treatments and interactions. The data were analyzed by ANOVA (proc GLM) (SAS INSTITUTE, 1988) and are presented as untransformed LSmeans ± SEM. The means of the treatments were compared by specific contrasts.
Results

A local effect of the presence of the DF was observed when endometrial PGF2α content was compared between the uterine horns independent of the in vitro stimulation (Figure 1). Overall, the PGF2α concentration in the UH contralateral to the DF was 49% higher than that of the ipsilateral UH (12.24 ± 0.95 vs. 8.22 ± 0.95 pg/mL/mg of tissue, respectively; P < 0.01). However, the endometrial PGF2α levels were not different between the UHs as a function of the position of the CL (Figure 2; 9.46 ± 0.95 vs. 11 ± 0.95 pg/mL/mg of tissue; P > 0.05).

When both uterine horns were considered, higher PGF2α concentrations were observed when the explants were treated with PDBu (13.09 ± 1.16 pg/mL/mg of tissue) than when they were treated with OT (10.02 ± 1.16 pg/mL/mg of tissue) or left untreated (7.59 ± 1.16 pg/mL/mg of tissue; P < 0.05) independent of the DF or CL position (Figures 3 and 4).

Under the conditions of the present investigation, large variations in PGF2α production among individuals were observed, resulting in an animal effect (P < 0.05). An interaction between animal and in vitro treatment was observed (P < 0.05). Two of the animals did not respond to either OT or PDBu, whereas three responded to both OT (minimum of 4.1% and maximum of 60.7%) and PDBu (minimum of 37.3% and maximum of 111.8%, data not shown). However, no interaction between animal and uterine horn was observed. Regardless of the magnitude of the PGF2α production, a higher concentration in the UH contralateral to the DF was consistently observed.
Discussion

It has been widely reported that the $E_2$ is produced by the ovarian follicle due to the interaction between the theca cells and the granulosa cells and, after deviation, the DF presents higher steroidogenic capacity, resulting in greater concentrations of $E_2$ in the follicular fluid (XU et al., 1995; BEG et al., 2001). The uterine and ovarian vascularization system of the bovine exhibits a particular anatomical feature, an entanglement between these vessels that leads to speculation regarding a possible local role of $E_2$ from the DF affecting the ipsilateral uterine horn. This vein is closely associated with the ovarian artery, permitting transport of PGF2α from the uterine vein into the ovarian artery by the classic mechanism of counterflow (MAPLETOFT; GINTHER, 1975).

Herein it can be speculated that $E_2$, synthesized by the DF was, via this counterflow mechanism, transferred from uterine vein to the artery, providing $E_2$ in higher concentrations to the uterine horn ipsilateral to the ovary bearing the DF. Similarly, $P_4$ produced by the CL would be provided in higher concentrations to the uterine horn ipsilateral to the CL. It is known that both $E_2$ and $P_4$ are involved in PGF2α synthesis and are produced in DF and CL, respectively. It is therefore plausible to infer a possible local action of these hormones that would promote endometrial PGF2α synthesis in the uterine horn ipsilateral to these structures.

In the present investigation, greater levels of PGF2α synthesis in the UH contralateral to the DF were observed,
indicating a local modulation of the E₂ after PGF₂α production stimulation. Although the exact mechanisms of action of estradiol on PGF₂α synthesis are not yet known, a few facts about estradiol are already well established. It is known that estradiol action is mediated by intracellular receptors, and two predominant types of receptors have been characterized: α and β estrogen receptors, and the first has been shown as the most important subtype for the regulation of uterine physiological processes (KUIPER et al., 1996; COUSE; KORACH, 1999; WALTHER et al., 1999; MURAMATSU; INOUÉ, 2000). Typically, estradiol exerts its functions by binding to its receptors, which act as transcription factors (MANGELSDORF et al., 1995) and, therefore, stimulate gene transcription and the synthesis of new proteins (MANGELSDORF et al., 1995; HO; LIAO, 2002).

Indeed, it is known that PGF₂α production is dependent on protein synthesis (BINELLI et al., 2000) and, therefore, the presence of different concentrations of E₂ in each uterine horn, as reported by IRELAND et al. (1994), is probably highly involved with quantitative and qualitative differences on protein synthesis between horns and, as a result, in PGF₂α production.

Bertan (2004) and collaborators suggested that the role of E₂ in triggering PGF₂α synthesis is dependent on previous progressive endometrial priming with several factors throughout estrous cycle. It was speculated here that during the period in which the PGF₂α synthesis was higher in the uterine horn contralateral to the DF, lower concentrations of the factors responsible for such previous priming are probably found in the UH ipsilateral to the DF. Lower synthesis capacity of PGF₂α production may be beneficial to the future pregnant uterine horn. However, further studies are needed to unravel the mechanisms in which the UH bearing the DF present lower levels of PGF₂α when stimulated and focusing on blood flow and cell-to-cell communication features through extracellular vesicles might explain such modulation. Indeed, extracellular vesicles such as exosomes or microvesicles were already described in body fluid such as seminal plasma, uterine fluid and even follicular fluid (BURNS et al., 2014; TANNETTA et al., 2014; BRESSAN et al., 2015). These vesicles contain bioactive molecules such as RNAs, miRNAs and proteins that are able to mediate physiological processes. For instance, miRNAs involved in the regulation of estradiol and progesterone concentrations were already reported in exosomes present in the follicular fluid in humans (SANG et al., 2013).

PGF₂α acts in the developing CL as a local regulator to enhance progesterone secretion directly and indirectly by stimulation angiogenic factors VEGF and FGF2, probably explaining why the developing CL does not acquire luteolytic capacity until several days following ovulation (MIYAMOTO et al., 2010). Therefore, a possible and yet not completely understood endocrine mechanism of communication between UHs could explain the similarity observed in PGF₂α synthesis in both UHs regardless of the CL position herein when D17 of the estrous cycle was studied. Nevertheless, both UHs showed capacity to respond to PGF₂α production when stimulated in vitro.

Interestingly, greater stimulation of PGF₂α synthesis in explants treated with PDBu and not OT was observed when compared to control. It has been demonstrated that oxytocin-stimulated PGF₂α secretion is associated with its binding to receptors, activity of PKC and the gene expression of enzymes involved in PGF₂α synthesis, e.g., PLA2, COX-2, and PGFS and that the endometrial sensitivity to oxytocin varies during the estrous cycle, presenting high responsiveness during the period of luteal regression until the early luteal stage of the next estrous cycle (SILVIA et al., 1991; MIRANDO et al., 1993; OKUDA et al., 2002).

These characteristics may explain the results obtained herein, as well as some previous results that did not observe a stimulatory effect of OT in endometrial explants retrieved from D17 cows (SKARZYNSKI et al., 1999; BERTAN, 2004).

It has been reported that PGF₂α produced by the endometrial cells is transported through the uterine vein by the prostaglandin transporter (PGT), a 12-transmembrane solute carrier organic anion transporter protein, and activation of ERK1/2 pathways and interactions between ERK1/2 and PGT protein appear to be PGT-mediated efflux transport function (LEE et al., 2013).

Thatcher et al. (2001) showed that treatment of endometrial (BEND) cells with the MEK-1 inhibitor, PD98059 completely abolished PDBu-induced secretion of PGFa, showing that the PKC-Raf1/MEK-1/ERK1/2 pathway was required for PDBu induction of COX-2 activation and PGFa, secretion in this model, probably due to activation of this pathway through PKC-mediated phosphorylation of Raf-1 and subsequent activation of MEK-1 and ERK1/2 (PRU et al., 2001; THATCHER et al., 2001). In summary, different specific mechanisms of action of both OT and PDBu, allied with the temporal variation of endometrium responsiveness to OT probably lead to different in vitro results of PGF₂α after stimulation in this study.
In the present investigation, PGF2α production varied greatly among the animals. Similar effects were also observed by Arnold et al. (2000) that used a protocol like the present one. An interaction between the animal and the treatment was also observed, where the magnitude of the response to the stimulators differed among animals. These observations suggested that the stimulatory action of both cell stimulators might be linked to the presence or absence of a set of proteins that comprise the PGF2α-generating cascade. It is possible that the magnitude of the response of the endometrial cells may be related to the concentrations of these proteins, thus generating responses with a wide range of magnitude.

In conclusion, it was demonstrated herein that the production of PGF2α in both uterine horns is similar regardless of the location of the CL. However, estradiol produced by the DF may have a local effect by inhibiting PGF2α synthesis. Furthermore, exogenous OT and PDBu were able to stimulate PGF2α synthesis in the endometrial explants, with PDBu treatment resulting in a greater stimulation when compared to control.

Acknowledgements

Authors would like to acknowledge Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) grants 99/03383-9 and 03/01584-4. We also thank Prof. Dr. William Thatcher from the University of Florida for PGF2α antibodies donation and Prof. Dr. Paulo Fantinato-Neto for statistical and graphical support.

References


PRU, J. K.; RUEDA, B. R.; AUSTIN, K. J.; THATCHER, W. W.; GUZELOGLU, A.; HANSEN, T. R. Interferon-tau suppresses prostaglandin F2alpha secretion independently of...


