Abstract

The effects splenic dilatation induced by acepromazine in a prospective, randomized study. Thirty-three adult mongrel dogs were divided into two groups designated as AG (acepromazine 0.05 mg/kg, i.v., n = 23) and CG (0.9% sodium chloride administered at a similar volume, n = 10). In both groups underwent sonographic examinations before (T0) and fifteen minutes (T15) after drug injection. The thickness spleen and splenic vein width were measured. Higher thickness was found in the AG group at T15 (2.47 cm) when compared to that at T0 (2.06 cm, \( p = 0.016 \)), while the T0 (2.33 cm) and T15 (2.39 cm) measures did not differ within the CG group. Moreover, the splenic vein width was higher \( (p = 0.013) \) at T15 than at T0 in the AG group. Based on results of this study, we concluded that acepromazine, in doses of 0.05 mg/kg, promotes splenomegaly in dogs after fifteen minutes of the injection.

Keywords: Canis lupus familiaris. Phenothiazines. Splenomegaly.

Introduction

Laparoscopy is a minimally invasive technique that has been established in veterinary medicine due to its numerous advantages (MATYJASIK et al., 2011). One of the most common complications of this technique is spleen laceration, which usually occurs at the time of Veress needle insertion or trocar. In this situation, the laparoscopy is converted into a laparotomy, culminating with a splenectomy due to the hemorrhage caused by the puncture. A t h o u g h the spleen is not necessary for survival, this lymphoid organ has important immune functions, such as bacterial clearance of the bloodstream and antibody production (MARQUES et al., 2002). Moreover,
the spleen is responsible for filtrating large blood volumes; this process removes senescent and altered erythrocytes and corpuscular inclusion (MARQUES et al., 2002). Teixeira et al. (2008) reported that splenectomy results in a high rate of sepsis.

Placing the Veress needle with open techniques has been considered to reduce laparoscopy impact on the spleen (SCHIOCHET, 2006) but the use of drugs that cause splenomegaly results in a higher risk of spleen lacerations.

Splenomegaly is associated with many causes, including the administration of phenothiazine tranquilizers, which are extensively used in veterinary medicine (O'BRIEN; WALLER; OSGOOD, 2004). Among the phenothiazines, acepromazine is frequently used to tranquilize animals (LEMKE, 2007), it is relatively safe (HALL; CLARKE, 1987) and is low in cost. However, Paula et al. (2010) described an association between the acepromazine use in dogs and spleen lacerations during laparoscopy.

O'Brien, Waller and Osgood (2004) found a significant increase in the maximum and minimum diameters of the spleen after thiopental sodium and acepromazine administration, but no change was observed after infusion of propofol. Wilson, Evans e Carpenter (2004) analyzed the effects of anesthetic protocols involving acepromazine (0.044 mg/kg) and butorphanol (0.22 mg/kg) on splenic size and hematological profiles and found decreased hematocrit values.

Acepromazine is largely used in veterinary anesthesia, but in the literature have a few research about the effect of this drug on the spleen. The aim of this study was to investigate the effects of acepromazine (0.05 mg/kg) on splenomegaly as measured by ultrasound.

Materials and Methods

Ethical aspects
This study was approved by the Institution’s Animal Experimentation Ethics Committee (protocol number 003/10).

Animals
Thirty-three healthy, adult mongrel dogs weighing 19.1 ± 6.5 kg were used. Before the study, the animals were submitted to clinical, hematological (complete blood count and polymerase chain reaction to Ehrlichia sp) and coproparasitologic. Animals that showed any abnormalities in the hematology or clinical examination were not included in the study.

Experimental design
The dogs were divided into two groups designated as AG (n = 23) and CG (n = 10). The AG group received 0.05 mg/kg acepromazine; the CG group received saline solution (0.9% sodium chloride) in the same volume of AG. In both groups, the solutions were administered intravenously via the cephalic vein.

Spleen measurements were performed on both groups before administration (T0) and 15 minutes after administration (T15).

Sonographic evaluation
The dogs were evaluated following a 12-hour food fast and 4-hour water fast. The dogs were maintained in the supine position with the spine aligned. The abdominal cavity was inspected using an 8-MHz sectorial transducer coupled to the ultrasound (Philips Envision HD, Andover, MA, USA). Evaluation included inspection of spleen echotexture and splenic dimensions (thickness and splenic vein width). The thickness (maximum) and splenic vein width were measured positioning the probe in a transverse plane to splenic major axis, on hilar region, using the caliper from machine. All measurements were done pre- and post-injection in both groups.

Statistical analysis
The data are presented as means and their standard deviations. The statistical analysis was performed using the computer program SigmaPlot v.11. All data were submitted to a Shapiro-Wilk normality test. Comparisons between values from T0 and T15
in each group were made using Mann-Whitney rank sum test. The significance level was set at $p \leq 0.05$.

**Results**

Ultrasound examination in both groups showed normal echotexture patterns for the species (Figure 1) at T0 and T15. The echogenicity of the spleen was higher than that of the renal cortex, and the hepatic parenchyma and splenic vein were easily visualized in the hilar region.

The spleen measure results are described in Table 1. The AG group showed an increase in spleen thickness ($p = 0.016$) and splenic vein width ($p = 0.013$), but there were no differences in these measures between T0 and T15 in the CG group.

**Discussion**

The initial fifteen minutes in the laparoscopic procedures is a complicated time, because in these moments occur most events, like compression of the diaphragm and important vessels (MATYJASIK et al., 2011), furthermore with the insert of trocar may cause injuries in organs and tissues.

Phenothiazines have been widely used for both sedation and premedication in several animal species (LEMKE, 2007). Studies suggest that these tranquilizers interfere with dopamine action in the brain (JONES, 1972).

The acepromazine dosage employed in the present study was recommended by Lemke (2007) for tranquilization in dogs. The data obtained in the
study confirm those described by O’Brien, Waller and Osgood (2004), who described splenic dilation after acepromazine administration. Disagreeing with these authors, Baldo et al. (2012) found no difference in spleen volume by computed tomography after acepromazine use (0.03 mg/kg). These results may indicate that with lower dosages there is no effect on the spleen, but the increase may occur with a 0.044 mg/kg acepromazine dose (Wilson; Evans; Carpenter, 2004). The great number of innervated fibers controlled by the adrenergic system is one possible explanation for the increase in spleen size after acepromazine administration; this drug promote adrenal suppression leading to relaxation of the splenic capsule and subsequent splenomegaly (Lang; Eglen; Henry, 1979).

The data collection times in this study were based on the time from insertion of the first trocar-cannula to establishment of pneumoperitoneum, which is considered the critical period for splenic injuries. Nevertheless, splenic sequestration promoted by acepromazine can last up to 24 hours (Lang; Eglen; Henry, 1979).

Wilson, Evans and Carpenter (2004) described reduced hematocrit values after acepromazine administration as a premedication in dogs and observed that this change was due to splenic red blood cell sequestration. Picioli et al. (2013) reported that administration of 0.1 mg/kg acepromazine by intramuscular injection induced a reduction in hematocrit and the total erythrocyte number for up to 8 hours after administration and hypothesized that this finding occurred due to splenic sequestration. This sequestration can be detrimental to some animals (Wilson; Evans; Carpenter, 2004), especially those that are hematological impaired prior to surgery. Mechanism of splenomegaly associated with the acepromazine administration is not known but may be related to the α1-adrenergic blockade leading to smooth muscle relaxation and vasodilatation with consequent passive congestion; these changes allow stretching of the spleen capsule’s smooth muscle fibers, with enlargement and the increased number of cells (Lang; Eglen; Henry, 1979; O’Brien; Waller; Osgood, 2004; Parry; Anderson, 1983; Wilson; Evans; Carpenter, 2004).

The increase in splenic vein thickness in dogs that received acepromazine may also be explained by the effects of acepromazine, which is known to promote vasodilatation and consequent hypotension (Mealey; Matthews, 1999).

Although splenomegaly was observed in a study using 0.044 mg/kg acepromazine, Wilson, Evans and Carpenter (2004) found lower spleen measure values when acepromazine was used with butorphanol, propofol and halothane. Thus, other drugs seem to influence acepromazine effect because the spleen measurements were higher when acepromazine was administered with butorphanol, thiopental and halothane. Nevertheless, splenomegaly occurred in all associations, with a 22% decrease in hematocrit, corroborating the results found in the present study.

Splenomegaly induced by acepromazine administration is a complication of invasive procedures in the abdominal cavity of dogs, especially those with hematological disorders prior to surgery. Considering this fact, other preanesthetic protocols can be indicated to avoid spleen trauma or injury that can compromise the indicated procedure, especially when the procedure involves laparoscopy.

Conclusions

Based on the results of this research, it’s possible to conclude that acepromazine in doses of 0.05 mg/kg promotes splenomegaly in dogs after fifteen minutes of the injection and should be avoided or used with caution as a premedication in dogs that are undergoing laparoscopy.
References


