Wet citrus pulp in finishing diets for feedlot lambs:

performance and hepatic enzyme concentration

Authors

  • Raquel Rodrigues Costa Mello Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Ciência Animal https://orcid.org/0000-0002-6589-0935
  • Elizângela Mirian Moreira Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Nutrição e Produção Animal https://orcid.org/0000-0001-7346-6571
  • Daniel Montanher Polizel Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Ciência Animal; Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Nutrição e Produção Animal https://orcid.org/0000-0003-4160-2596
  • Marcos Vinícius Castro Ferraz Júnior Universidade Federal do Amazonas, Departamento de Ciência Animal https://orcid.org/0000-0002-6041-2539
  • Janaina Socolovski Biava Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Ciência Animal https://orcid.org/0000-0001-8192-4907
  • Evandro Maia Ferreira Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Ciência Animal https://orcid.org/0000-0002-1057-5508
  • Alexandre Vaz Pires Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Ciência Animal, Piracicaba – SP, Brazil 2 Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Nutrição e Produção Animal, Pirassununga https://orcid.org/0000-0002-2210-7963

DOI:

https://doi.org/10.11606/issn.1678-4456.bjvras.2020.161434

Keywords:

By-product, Performance, Feed efficiency

Abstract

Pectin industry generates a citrus pulp residue compounded by peduncle, endocarp, juice vesicles, columella, seeds and tiny fractions of epicarp and mesocarp of citrus fruits, denominated Wet Citrus Pulp (WCP), which has not yet been tested as food for lamb’s nutrition. Thus, this study aimed to determine the effect of partial replacement of ground corn by WCP in high-concentrate diets on the performance and hepatic enzyme concentration of feedlot lambs. Forty-two male lambs (15 Santa Inês and 27 ½ Dorper × Santa Inês), with 24.7 ± 1.5 kg of BW and 60 ± 5 d of age was assigned to a randomized complete block design. Within blocks (n = 14), lambs were randomly assigned to 1 of 3 treatments: 0WCP (control) – diet containing 75.5% ground corn without WCP; 20WCP – diet containing 20% WCP in replacement of ground corn, and 40WCP – diet containing 40% WCP in replacement of ground corn. The experiment lasted 70 days, which was split in 3 experimental periods (14 days of diets’ adaptation and 2 sub-periods of 28 days each). Statistical analyses were performed using the MIXED procedure of the SAS. Orthogonal polynomials for diet response were determined by linear and quadratic effects. There was a quadratic effect for DM, CP, ash, ether extract and NFC intake The highest DM and CP intake was observed for lambs fed 20WCP, however, the control diet increased the ash, ether extract and NFC intake. The increased levels of WCP decreased the ADG and feed efficiency (FE) during the adaptation period, however, did not affect the ADG and FE on periods 1 and 2. Consequently, the increased levels of WCP inclusion decreased linearly the BW. There was no effect of WCP inclusion in diets on Gamma-Glutamyl Transferase (GGT) concentration. However, there was a linear increase for Aspartate Aminotransferase (AST) concentration during the adaptation period, but without difference in other periods. In conclusion, adding up to 40% of WCP in finishing diets for feedlot lambs decrease performance during adaptation period, compromising the final body weight, but without damages effects on liver enzymes.

Downloads

Download data is not yet available.

References

Allen MS, Bradford BJ, Harvatine KJ. The cow as a model to study food intake regulation. Annu Rev Nutr. 2005;25(1):523-47. http://dx.doi.org/10.1146/annurev. nutr.25.050304.092704. PMid:16011477.

Allen MS. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J Dairy Sci. 2000;83(7):1598624. http://dx.doi.org/10.3168/jds.S0022-0302(00)75030-2. PMid:10908065.

AOAC: Association of Official Analytical Chemists. Official methods of analyses. 16th ed. Washington: AOAC; 1990.

Bampidis VA, Robinson PH. Citrus by-products as ruminant feed: a review. Anim Feed Sci Technol. 2006;128(3/4):175217. http://dx.doi.org/10.1016/j.anifeedsci.2005.12.002.

Baumont R, Prache M, Meuret M, Morand-Fehr P. How forage characteristics influence behavior and intake in small ruminants. Livest Prod Sci. 2000;64(1):15-28. http:// dx.doi.org/10.1016/S0301-6226(00)00172-X.

Borucki Castro SI, Phillip LE, Lapierre H, Jardon PW, Berthiaume R. The relative merit of ruminal undegradable protein from soybean meal or soluble fiber from beet pulp to improve nitrogen utilization in dairy cows. J Dairy Sci. 2008;91(10):3947-57. http://dx.doi.org/10.3168/jds.20070638. PMid:18832219.

Braun JP, Benard P, Burgat V, Rico AG. Gamma glutamyl transferase in domestic animals. Vet Res Commun. 1983;6(2):77-90. http://dx.doi.org/10.1007/BF02214900. PMid:6135267.

DePeters EJ, Fadel JG, Arosemena A. Digestion kinetics of neutral detergent fiber and chemical composition within some selected by-product feedstuffs. Anim Feed Sci Technol. 1997;67(2-3):127-40. http://dx.doi.org/10.1016/03778401(96)01145-5.

Ferreira EM, Ferraz MVC Jr, Biava JS, Assis RG, Barroso JPR, Polizel DM, Araujo LC, Pires AV. Trop Anim Health Prod. 2020;52(1):373-8. http://dx.doi.org/10.1007/s11250019-02025-7. PMid:31372882.

Ferreira EM, Pires AV, Susin I, Mendes CQ, Gentil RS, Araujo RC, Amaral RC, Loerch SC. Growth, feed intake, carcass characteristics, and eating behavior of feedlot lambs fed high-concentrate diets containing soybean hulls. J Anim Sci. 2011;89(12):4120-6. http://dx.doi.org/10.2527/ jas.2010-3417. PMid:21666006.

Ginane C, Bonnet M, Baumont R, Revell DK. Feeding behavior in ruminants: a consequence of interactions between a reward system and the regulation of metabolic homeostasis. Anim Prod Sci. 2015;55(3):247-60. http:// dx.doi.org/10.1071/AN14481.

Goering HK, Van Soest PJ. Forage fiber analysis: apparatus reagents, procedures and some applications. Washington: USDA; 1970. (Agriculture Handbook; no. 379).

Hall MB, Pell AN, Chase LE. Characteristics of neutral detergent-soluble fiber fermentation by mixed ruminal microbes. Anim Feed Sci Technol. 1988;70(1-2):23-39. http://dx.doi.org/10.1016/S0377-8401(97)00068-0.

Kaneko JJ, Harvery JW, Bruss ML. Clinical biochemistry of domestic animals. 6th ed. San Diego: Academic Press; 2008.

Ladue JS, Wroblewski F. Serum glutamic pyruvic transaminase (sgp-t) in hepatic disease: a preliminary report. Ann Intern Med. 1956;45(5):801-11. http://dx.doi.org/10.7326/00034819-45-5-801. PMid:13373188.

Leite LA, Reis RB, Pimentel PG, Saturnino HM, Coelho SG, Moreira GR. Performance of lactating dairy cows fed sunflower or corn silages and concentrate based on citrus pulp or ground corn. Braz. J Anim Sci. 2017;46:56-64. http:// dx.doi.org/10.1590/s1806-92902017000100009.

Mertens DR. Creating a system for meeting the fiber requirements of dairy cows. J Dairy Sci. 1997;80(7):146381. http://dx.doi.org/10.3168/jds.S0022-0302(97)76075-2. PMid:9241608.

Minervino AH, Barreto RA Jr, Queiroz GF, Headley SA, Ortolani EL. Predictive values of aspartate aminotransferase and gamma-glutamyl transferase for the hepatic accumulation of copper in cattle and buffalo. J Vet Diagn Invest. 2008;20(6):7915. http://dx.doi.org/10.1177/104063870802000613. PMid:18987231.

Moreira CN, Souza SN, Barini AC, Araújo EG, Fioravanti MCS. Serum y-glutamyltransferase acitivity as an indicator of chronic liver injury in cattle with no clinical signs. Arq Bras Med Vet Zootec. 2012;64(6):1403-10. http://dx.doi. org/10.1590/S0102-09352012000600001.

NRC: National Research Council. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. Washington: The National Academies Press; 2007.

Oltramari CE, Nápoles GG, De Paula MR, Silva JT, Gallo MP, Pasetti MH, Bittar CM. Performance and metabolism of dairy calves fed starter feed containing citrus pulp as a replacement for corn. Anim Prod Sci. 2016;58(3):561-7. http://dx.doi.org/10.1071/AN14851. PMid:26954149.

Peixoto ELT, Morenz MJF, Fonseca CEM, Moura ES, Lima KR, Lopes FCF, Cabral LS. Citrus pulp in diets for lambs: intake, digestibility and ruminal parameters. Semina: Ciênc Agrár. 2015;36(5):3421-30. http://dx.doi.org/10.5433/16790359.2015v36n5p3421.

Pereira MS, Ribeiro ELA, Mizubuti IY, Rocha MA, Kuraoka JT, Nakaghi EYO. Nutrient intake and performance of feedlot lambs fed diets with pressed citrus pulp replacing corn silage. Braz. J Anim Sci. 2008;37(1):134-9. http://dx.doi. org/10.1590/S1516-35982008000100020. PMid:17940159.

Polizel DM, Gobato LGM, Souza RA, Gentil RS, Ferreira EM, Freire APA, Susin I. Performance and carcass traits of goat kids fed high-concentrate diets containing citrus pulp or soybean hulls. Cienc Rural. 2016;46(4):707-12. http:// dx.doi.org/10.1590/0103-8478cr20150450.

Polizel DM, Susin I, Gentil RS, Ferreira EM, Souza RA, Freire APA, Pires AV, Ferraz MVC Jr, Rodrigues PHM, Eastridge ML. Crude glycerin decreases nonesterified fatty acid concentration in ewes during late gestation and early lactation. J Anim Sci. 2017;95(2):875-83. http://dx.doi. org/10.2527/jas2016.0999. PMid:28380605.

Porcionato MAF, Berchielli TT, Franco GL. Digestibility, degradability and concentration of ruminal ammonia in bovines fed diet with citrus pulp in pellets. Braz J Anim Sci. 2004;33(1):258-66. http://dx.doi.org/10.1590/S151635982004000100030.

Pulina G, Avondo M, Molle G, Francesconi AHD, Atzori AS, Cannas A. Models for estimating feed intake in small ruminants. Braz J Anim Sci. 2013;42(9):675-90. http:// dx.doi.org/10.1590/S1516-35982013000900010.

Rodrigues GH, Susin I, Pires AV, Mendes CQ, Araujo RC, Packer IU, Ribeiro MF, Gerage LV. Replacement of corn by citrus pulp in high grain diets fed to feedlot lambs. Cienc Rural. 2008;38(3):789-94. http://dx.doi.org/10.1590/S010384782008000300031.

Silva LDF, Ezequiel JMB, Azevedo OS, Cattelan JW, Barbora JC, Resende FD, Carmo FRG. Total and partial digestion of some components of diets containing different levels of soybean hulls and nitrogen sources in steers. Braz J Anim Sci. 2002;31(3):1258-68. http://dx.doi.org/10.1590/S151635982002000500024.

Szasz G. Gamma-Glutamyltranspeptidase. In: Bergmeyer HU. Methoden der enzymatischen Analyse. Weiheim: Verlag Chemie, 1974. http://dx.doi.org/10.1016/B978-012-091302-2.50039-6.

Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74(10):3583-97. http:// dx.doi.org/10.3168/jds.S0022-0302(91)78551-2. PMid:1660498.

Waldo DR. Effect of forage quality on intake and forage concentrate interactions. J Dairy Sci. 1986;69(2):617-31. http://dx.doi.org/10.3168/jds.S0022-0302(86)80446-5.

Weiss W, Conrad HR, St. Pierre NR. A theoretically-based model for predicting total digestible nutrient values of forage and concentrate. Anim Feed Sci Technol. 1992;39(1-2):95110. http://dx.doi.org/10.1016/0377-8401(92)90034-4.

Xu L, Wang Y, Liu J, Zhu W, Mao S. Morphological adaptation of sheep’s rumen epithelium to high-grain diet entails alteration in the expression of genes involved in cell cycle regulation, cell proliferation and apoptosis. J Anim Sci Biotechnol. 2018;9(1):32-44. http://dx.doi.org/10.1186/ s40104-018-0247-z. PMid:29686866.

Downloads

Published

2020-04-24

How to Cite

Mello, R. R. C., Moreira, E. M., Polizel, D. M., Ferraz Júnior, M. V. C., Biava, J. S., Ferreira, E. M., & Pires, A. V. (2020). Wet citrus pulp in finishing diets for feedlot lambs:: performance and hepatic enzyme concentration. Brazilian Journal of Veterinary Research and Animal Science, 57(1), e161434. https://doi.org/10.11606/issn.1678-4456.bjvras.2020.161434

Issue

Section

FULL ARTICLE

Most read articles by the same author(s)