Evolution of Avian coronavirus (AvCoV) in BHK-21 and VERO cells


  • Paulo Eduardo Brandão Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine University of São Paulo
  • Beatriz Alcântara Leite Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal
  • Sueli Akemi Taniwaki Miyagi Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal




Avian coronavirus, Spike, Nsp3, Evolution, Cell culture


Avian coronavirus (AvCoV) infects a range of tissues in chickens and several other avian species. Although the virus can be isolated in chicken embryos, only a few strains of the 6 genotypes/33 lineages can grow in cell lines, with the Beaudette strain (GI-1 lineage) being the most used for in vitro studies. Considering the differences between cell lines and chicken embryos as habitats for AvCoV, this study aimed to assess the diversity of the genes coding for the nonstructural protein 3 (nsp3) and spike envelope protein (S) after serial passages in BHK-21 and Vero cells. After 14 passages of an embryo-adapted Beaudette strain, the virus loads fluctuated in both cell lines, with the highest loads being 8.72 log genome copies/µL for Vero and 6.36 log genome copies/µL for BHK-21 cells. No polymorphisms were found for nsp3; regarding S, not only aa substitutions (Vero: 8th passage A150S, and 14th S150A; BHK-21: 4th S53F, 8th F53Y, and 8th S95R), but also minor variants could be detected on chromatograms with fluctuating intensities. As the regions of these aa substitutions are within the receptor-binding domain of S, it can be speculated that differences in cell receptors between Vero and BHK-21 cells and the speed of cell death led to the selection of different dominant strains, while the stability of nsp3 supports its function as a protease involved in AvCoV replication. In conclusion, AvCoV quasispecies evolution is influenced by the biological model under consideration, and a gradual transition is seen for minor and major variants.


Download data is not yet available.


Armesto M, Cavanagh D, Britton P. The replicase gene of avian coronavirus infectious bronchitis virus is a determinant of pathogenicity. PLoS One. 2009;4(10):e7384. http://dx.doi. org/10.1371/journal.pone.0007384. PMid:19816578.

Bickerton E, Maier HJ, Stevenson-Leggett P, Armesto M, Britton P. The S2 subunit of infectious bronchitis virus Beaudette is a determinant of cellular tropism. 2018;92(19):e01044-18. http:// dx.doi.org/10.1128/JVI.01044-18. PMid:30021894.

BLAST: Basic Local Alignment Search Tool [Internet]. Bethesda: BLAST; 2018 [cited 2020 Jan 28]. Available from: http://www.ncbi.nlm.nih.gov/BLAST/

Callison SA, Hilt DA, Boynton TO, Sample BF, Robison R, Swayne DE, Jackwood MW. Development and evaluation of a real-time Taqman RT-PCR assay for the detection of infectious bronchitis virus from infected chickens. J Virol Methods. 2006;138(1-2):60-5. http://dx.doi.org/10.1016/j. jviromet.2006.07.018. PMid:16934878.

Casais R, Dove B, Cavanagh D, Britton P. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J Virol. 2003;77(16):9084-9. http://dx.doi. org/10.1128/JVI.77.16.9084-9089.2003. PMid:12885925.

Cavanagh D. Coronavirus avian infectious bronchitis virus. Vet Res. 2007;38(2):281-97. http://dx.doi.org/10.1051/ vetres:2006055. PMid:17296157.

Colvero LP, Villarreal LY, Torres CA, Brañdo PE. Assessing the economic burden of avian infectious bronchitis on poultry farms in Brazil. OIE Rev Sci Tech. 2015;34(3):993-9. http://dx.doi.org/10.20506/ rst.34.3.2411. PMid:27044167.

Cook JKA, Jackwood M, Jones RC. The long view: 40 years of infectious bronchitis research. Avian Pathol. 2012;41(3):239-50. http://dx.doi.org/10.1080/03079457.2 012.680432. PMid:22702451.

Coria MF, Ritchie AE. Serial passage of 3 strains of avian infectious bronchitis virus in african green monkey kidney cells (VERO). Avian Dis. 1973;17(4):697-704. http://dx.doi. org/10.2307/1589036. PMid:4203249.

Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):18192. http://dx.doi.org/10.1038/s41579-018-0118-9. PMid:30531947.

Cunningham CH, Spring MP, Nazerian K. Replication of avian infectious bronchitis virus in african green monkey kidney cell line VERO. J Gen Virol. 1972;16(3):423-7. http:// dx.doi.org/10.1099/0022-1317-16-3-423. PMid:4627930.

Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev. 2012;76(2):159-216. http://dx.doi.org/10.1128/MMBR.05023-11. PMid:22688811.

Empresa Brasileira de Pesquisa Agropecuária. Electropherogram quality analysis [Internet]. Brasília: EMBRAPA; 2018 [cited 2020 Jan 28]. Available from: http://asparagin.cenargen. embrapa.br/phph/

Fang SG, Shen S, Tay FPL, Liu DX. Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells. Biochem Biophys Res Commun. 2005;336(2):417-23. http://dx.doi.org/10.1016/j. bbrc.2005.08.105.

International Committee on Taxonomy of Viruses. ICTV Taxonomy history: avian coronavirus [Internet]. USA: ICTV; 2018 [cited 2020 Jan 28]. Available from: https://talk.ictvonline. org/taxonomy/p/taxonomy-history?taxnode_id=20181880

Jackwood MW, Hilt DA, Callison SA. Detection of infectious bronchitis virus by real-time reverse transcriptase–polymerase chain reaction and identification of a quasispecies in the Beaudette strain. Avian Dis. 2003;47(3):718-24. http:// dx.doi.org/10.1637/6075. PMid:14562902.

Jones RC, Worthington KJ, Capua I, Naylor CJ. Efficacy of live infectious bronchitis vaccine against a novel European genotype, Italy 02. VetRec. 2005;156(20):646-7. http:// dx.doi.org/10.1136/vr.156.20.646.

Keep S, Bickerton E, Armesto M, Britton P. The ADRP domain from a virulent strain of infectious bronchitis virus is not sufficient to confer a pathogenic phenotype to the attenuated beaudette strain. J Gen Virol. 2018;99(8):1097102. http://dx.doi.org/10.1099/jgv.0.001098. PMid:29893665.

Laconi A, van Beurden SJ, Berends AJ, Krämer-Kühl A, Jansen CA, Spekreijse D, Chénard G, Philipp HC, Mundt E, Rottier PJM, Hélène Verheije M. Deletion of accessory genes 3a, 3b, 5a or 5b from avian coronavirus infectious bronchitis virus induces an attenuated phenotype both in vitro and in vivo. J Gen Virol. 2018;99(10):1381-90. http:// dx.doi.org/10.1099/jgv.0.001130. PMid:30067172.

Leyson CLM, Jordan BJ, Jackwood MW. Insights from molecular structure predictions of the infectious bronchitis virus S1 spike glycoprotein. Infect Genet Evol. 2016;46:124-9. http:// dx.doi.org/10.1016/j.meegid.2016.11.006. PMid:27836775.

Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3(1):237-61. http:// dx.doi.org/10.1146/annurev-virology-110615-042301. PMid:27578435.

Lin Tl, Loa CC, Wu CC. Complete sequences of 3’ end coding region for structural protein genes of Turkey coronavirus. Virus Res. 2004;106(1):61-70. http://dx.doi.org/10.1016/j. virusres.2004.06.003.

Liu C, Xu HY, Liu DX. Induction of caspase-dependent apoptosis in cultured cells by the avian coronavirus infectious bronchitis virus. J Virol. 2001;75(14):6402-9. http://dx.doi. org/10.1128/JVI.75.14.6402-6409.2001. PMid:11413307.

Nikfarjam L, Farzaneh P. Prevention and detection of mycoplasma contamination in cell culture. Cell J. 2012;13(4):203-12. PMid:23508237.

Ono EAD, Taniwaki SA, Brandão P. Short interfering RNAs targeting a vampire-bat related rabies virus phosphoprotein mRNA. Braz J Microbiol. 2017;48(3):566-9. http://dx.doi. org/10.1016/j.bjm.2016.11.007. PMid:28223028.

Otsuki K, Noro K, Yamamoto H, Tsubokura M. Studies on avian infectious bronchitis virus (IBV) - II. Propagation of IBV in several cultured cells. Arch Virol. 1979;60(2):115-22. http://dx.doi.org/10.1007/ BF01348027. PMid:226034.

Phillips JE, Jackwood MW, McKinley ET, Thor SW, Hilt DA, Acevedol ND, Williams SM, Kissinger JC, Paterson AH, Robertson JS, Lemke C. Changes in nonstructural protein 3 are associated with attenuation in avian coronavirus infectious bronchitis virus. Virus Genes. 2012;44(1):63-74. http://dx.doi.org/10.1007/s11262-0110668-7. PMid:21909766.

Promkuntod N, van Eijndhoven REW, de Vrieze G, Gröne A, Verheije MH. Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus. Virology. 2014;448:26-32. http://dx.doi.org/10.1016/j.virol.2013.09.018. PMid:24314633.

R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2015 [cited 2020 Jan 28]. Available from: http:// www.R-project.org/

Rossa GAR, Torres CA, Villarreal LYB, Silva SOS, Richtzenhain LJ, Brandão PE. On the diversity of papain-like and nsp2 genes of Brazilian strains of infectious bronchitis virus. In: Proceedings of the VII International Symposium on Avian Corona- and Pneumoviruses and Complicating Pathogens; 2012 June 18-21; Rauischolzhausen, Germany. USA: Web of Science Group; 2012. p. 98-109.

Shan D, Fang S, Han Z, Ai H, Zhao W, Chen Y, Jiang L, Liu S. Effects of hypervariable regions in spike protein on pathogenicity, tropism, and serotypes of infectious bronchitis virus. Virus Res. 2018;250:104-13. http://dx.doi. org/10.1016/j.virusres.2018.04.013. PMid:29684409.

Sjaak de Wit JJ, Cook JK, van der Heijden HM. Infectious bronchitis virus variants: a review of the history, current situation and control measures. Avian Pathol. 2011;40(3):22335. http://dx.doi.org/10.1080/03079457.2011.566260. PMid:21711181.

Toro H, Pennington D, Gallardo RA, van Santen VL, van Ginkel FW, Zhang J, Joiner KS. Infectious bronchitis virus subpopulations in vaccinated chickens after challenge. Avian Dis. 2012a;56(3):501-8. http://dx.doi.org/10.1637/9982110811-Reg.1. PMid:23050466.

Toro H, van Santen VL, Jackwood MW. Genetic diversity and selection regulates evolution of infectious bronchitis virus. Avian Dis Dig. 2012b;56(3):449-55. http://dx.doi. org/10.1637/10072-020212-Review.1. PMid:23050459.

Walls AC, Tortorici MA, Bosch BJ, Frenz B, Rottier PJM, DiMaio F, Rey FA, Veesler D. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature. 2016;531(7592):114-7. http://dx.doi.org/10.1038/ nature16988. PMid:26855426.

Wickramasinghe INA, de Vries RP, Grone A, de Haan CAM, Verheije MH. Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity. J Virol. 2011;85(17):8903-12. http://dx.doi.org/10.1128/ JVI.05112-11. PMid:21697468.

Winter C, Schwegmann-Weßels C, Cavanagh D, Neumann U, Herrler G. Sialic acid is a receptor determinant for infection of cells by avian Infectious bronchitis virus. J Gen Virol. 2006;87(Pt 5):1209-16. http://dx.doi.org/10.1099/ vir.0.81651-0. PMid:16603523.

Yamada Y, Liu XB, Fang SG, Tay FPL, Liu DX. Acquisition of cell-cell fusion activity by amino acid substitutions in spike protein determines the infectivity of a coronavirus in cultured cells. PLoS One. 2009;4(7):e6130. http://dx.doi. org/10.1371/journal.pone.0006130. PMid:19572016.

Youn S, Leibowitz JL, Collisson EW. In vitro assembled, recombinant infectious bronchitis viruses demonstrate that the 5a open reading frame is not essential for replication. Virology. 2005;332(1):206-15. http://dx.doi.org/10.1016/j. virol.2004.10.045. PMid:15661153.

Young L, Sung J, Stacey G, Masters JR. Detection of mycoplasma in cell cultures. Nat Protoc. 2010;5(5):929-34. PMid:20431538.

Zhang Lab [Internet]. Ann Arbor: Zhang Lab; 2018 [cited 2020 Jan 28]. Available from: http://zhanglab.ccmb.med. umich.edu/I-TASSER

Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9(1):40. http://dx.doi. org/10.1186/1471-2105-9-40. PMid:18215316.

Ziebuhr J, Gorbalenya AE, Snijder EJ. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen

Virol. 2000;81(Pt 4):853-79. http://dx.doi.org/10.1099/00221317-81-4-853. PMid:10725411.




How to Cite

Brandão, P. E., Leite, B. A., & Miyagi, S. A. T. (2020). Evolution of Avian coronavirus (AvCoV) in BHK-21 and VERO cells. Brazilian Journal of Veterinary Research and Animal Science, 57(2), e166086. https://doi.org/10.11606/issn.1678-4456.bjvras.2020.166086




Funding data

Most read articles by the same author(s)

1 2 > >>