Detection of resistance genes in pyometra isolated bacteria in bitches

Authors

DOI:

https://doi.org/10.11606/issn.1678-4456.bjvras.2021.173908

Keywords:

Antibiotics, blaCMY, blaSPM, blaSIM, Resistance

Abstract

Pyometra has several immunological and molecular changes that are responsible for uterine inflammation and the disease may or may not have infections. This study aimed to isolate and identify bacteria in the uterine content of bitches with pyometra, to analyze the susceptibility profile to antibiotics, detect β-lactamase enzyme production by phenotypic tests, and resistance genes to β-lactams. Eighteen samples of uterine content were collected by aspiration puncture. The samples were inoculated in bacteriological media and identified by biochemical tests. Subsequently, antibiogram tests, screening for detection of β-lactamases, and Real-Time PCR for detection of resistance genes was performed. Escherichia coli, Klebsiella spp., Enterobacter aerogenes, Citrobacter spp., Staphylococcus spp., and Streptococcus spp. were identified in the analyzed samples of uterine content. In the antibiogram test, 90.5% of the isolates showed resistance to at least one antibiotic, and of these, 36.8% were considered MDR, with three Staphylococcus spp., three E. coli, and one Klebsiella spp. Concerning bacterial resistance to the groups of antibiotics tested, 38.1% of the isolates were resistant to at least one type of β-lactam, 33.3% to tetracycline, 19.0% to aminoglycosides, and 14.3% to fluoroquinolones, macrolides, and trimethoprim-sulfamethoxazole. In the phenotypic test to detect β-lactamase production, E. coli samples were negative and Klebsiella spp. was positive for the production of AmpC, which presented the blaCMY, blaSPM, and blaSIM genes. Bacteria that are resistant to antibiotics represent a great challenge and laboratory support is therefore essential, without which therapeutic success decreases and death may be inevitable.

Downloads

Download data is not yet available.

References

Alby K, Miller MB. Mechanisms and detection of antimicrobial resistance. In: Long S, Prober C, Fischer M. Principles and pactice of pediatric infectious diseases. 5. ed. Philadelphia: Elsevier; 2018. p. 1467-78.

Baithalu RK, Maharana BR, Mishra C, Sarangi L, Samal L. Canine pyometra. Vet World [Internet]. 2010 [cited 2020 Aug 26];3(7):340-2. Available from: http://www.veterinaryworld.org/Vol.3/July/Canine%20Pyometra.pdf

Bello-López JM, Cabrero-Martínez OA, Ibáñez-Cervantes G, Hernández-Cortez C, Pelcastre-Rodríguez LI, Gonzalez-Avila LU, Castro-Escarpulli G. Horizontal gene transfer and its association with antibiotic resistence in the genus Aeromonas spp. Microorganisms. 2019;7(9):363. https://doi.org/10.3390/microorganisms7090363. PMid:31540466.

Brasil. Agência Nacional de Vigilância Sanitária. Manual de microbiologia clínica para o controle de infecção relaciona à assistência à saúde. Módulo 6: Detecção e identificação de bactérias de importância médica [Internet]. Brasília, DF: ANVISA; 2013 [cited 2020 Aug 26]. Available from: https://www20.anvisa.gov.br/segurancadopaciente/index.php/publicacoes/item/deteccao-e-identificacao-de-bacterias-de-importancia-medica.

Campana EH, Barbosa PP, Fehlberg LCC, Gales AC. Frequency of plasmid-mediated AmpC in Enterobacteriaceae isolated in a Brazilian Teaching Hospital. Braz J Microbiol. 2013;44(2):477-80. https://doi.org/10.1590/S1517-83822013000200023. PMid:24294242.

Carneiro AP, Toniollo GH, Schocken-Iturrino RP. Avaliação microbiológica da flora vaginal e do corpo uterino de cadelas (Canis familiaris) submetidas a ovariossalpingohisterectomia. Ars Vet. 2005;21(3):361-7. https://doi.org/10.15361/2175-0106.2005v21n3p361-367.

Clinical and Laboratory Standards Institute – CLSI. Performance standards for antimicrobial susceptibility testing; twenty-seven informational supplement. M100. USA: CLSI; 2017.

Coggan JA. Estudo microbiológico de conteúdo intra-uterino e histopatológico de útero de cadelas com piometra e pesquisa de fatores de virulência em cepas de Escherichia coli e o potencial risco à saúde humana [dissertação]. São Paulo: Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo; 2005.

Eiamphungporn W, Schaduangrat N, Malik AA, Nantasenamat C. Tackling the antibiotic resintance caused by class A β-lactamase inhibitory protein. Int J Mol Sci. 2018;19:1-24. https://doi.org/10.3390/ijms19082222.

Fieni F, Topie E, Gogny A. Medical treatment for pyometra in dog. Reprod Domest Anim. 2014;49(Suppl 2):28-32. https://doi.org/10.1111/rda.12302. PMid:24947858.

Hughes D, Andersson DI. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):374-91. https://doi.org/10.1093/femsre/fux004. PMid:28333270.

Kaur J, Mahajan G, Chand K, Chopra SS. Enhancing phenotytic detection of ESBL in AmpC co-producers by using Cefepime and Tazobactam. J Clin Diagn Res. 2016;10(1):5-8. https://doi.org/10.7860/JCDR/2016/15264.7041. PMID: 26894064.

Krekeler N, Marenda MS, Browning GF, Holden KM, Charles LA, Wright PJ. Uropathogenic virulence factor FimH facilities binding of uteropathogenic Escherichia coli to canine endometrium. Comp Immunol Microbiol Infect Dis. 2012;35(5):461-7. https://doi.org/10.1016/j.cimid.2012.04.001. PMid:22554919.

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standar definitions for acquidred resitance. Clin Microbiol Infect. 2012;18(3):268-81. https://doi.org/10.1111/j.1469-0691.2011.03570.x. PMid:21793988.

Martinez Rojas DDV. Betalactamasas tipo AmpC: generalidades y métodos para detección fenotípica. Rev Soc Venez Microbiol [Internet]. 2009 [cited 2020 Aug 26];29:78-83. Available from: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315-25562009000200003&lng=es.

Meletis G. Carbapenem resistance; overview of the problem and future perspectives, Ther Adv Infect Dis. 2016;3(1):15-21. https://doi.org/10.1177/2049936115621709. PMID: 26862399.

Oliveira FS, Paz LN, Mota TM, Oriá AP, Silva MCA, Pinna MH. Perfil de resitência de isolados de Escherichia coli a partir de piometra canina. Cienc Anim Bras. 2016;17(4):615-21. https://doi.org/10.1590/1089-6891v17i438817.

Porowska E, Kulus M, Jankowski M, Kocherova I, Jeseta M, Chamier-Gliszczyńska A, Stefańska K, Borowiec B, Bukowska D, Brüssow KP, Kempisty B, Antosik P. Selected aspects of endometritis – pyometra complex in dogs – current troubles and treatment perspectives. Med J Cell Biol. 2018;6(3):108-13. https://doi.org/10.2478/acb-2018-0017.

Pruthvishree BS, Vinodh Kumar OR, Sivakumar M, Tamta S, Sunitha R, Sinha DK, Singh BR. Molecular characterization of extensively drug resistant (XDR), extended spectrum beta-lactamases (ESBL) and New Delhi Metallo beta-lactamase-1 (blaNDM1) producing Escherichia coli isolated from a male dog - a case report. Vet Arh. 2018;88(1):139-48. https://doi.org/10.24099/vet.arhiv.160924.

Rautela R, Katiyar R. Review on canine pyometra, oxidative stress and current trends in diagnostics. Asian Pac J Reprod. 2019;8(2):45-55. https://doi.org/10.4103/2305-0500.254645.

Santiago GS, Motta CC, Bronzato GF, Gonçalves D, Souza MMS, Coelho IS, Ferreira HN, Coelho SMO. Revisão: produção de β-lactamases do tipo AmpC em enterobacteriaceae. Rev Bras Med Vet [Internet]. 2016 [cited 2020 Aug 26];38(3):17-30. Available from: https://repositorio-aberto.up.pt/bitstream/10216/111009/2/255803.pdf

Santos AG. Avaliação da microbiota vaginal de cadelas usando como diagnóstico o isolamento microbiológico e a colpocitologia [dissertação]. Seropédica: Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro; 2006 [cited 2020 Aug 26]. Available from: http://www.dominiopublico.gov.br/pesquisa/DetalheObraForm.do?select_action=&co_obra=65770.

Santos AL, Dos Santos AP, Ito CRM, Queiroz PHP, de Almeida JA, de Carvalho MAB Jr, de Oliveira CZ, Avelino MAG, Wastowski IJ, Gomes GPLA, Souza ACSE, Vasconcelos LSNOL, Santos MO, da Silva CA, Carneiro LC. Profile of enterobacteria resistant to beta-lactams. Antibiotics (Basel). 2020;9(7):410. https://doi.org/10.3390/antibiotics9070410. PMid:32679663.

Silva LDM, Lima DBC. Aspectos da fisiologia reprodutiva da cadela. Rev Bras Reprod Anim [Internet]. 2018 [cited 2020 Aug 26];42(3-4):135-40. Available from: http://www.cbra.org.br/portal/downloads/publicacoes/rbra/v42/n3-4/p135-140%20(RB750).pdf.

Vicente D, Pérez-Trallero E. Tetracyclines, sulfonamides, and metronidazole. Enferm Infecc Microbiol Clin. 2010;28(2):122-30. https://doi.org/10.1016/j.eimc.2009.10.002. PMid:20097452.

Wijewardana V, Sugiura K, Wijesekera DPH, Hatoya S, Nishimura T, Kanegi R, Ushigusa T, Inaba T. Effect of ovarian hormones on maturation of dendritic cells from peripheral blood monocytes in dogs. J Vet Med Sci. 2015;77(7):771-5. https://doi.org/10.1292/jvms.14-0558. PMid:25715707.

Yoon HY, Byun JY, Park KH, Min BS, Kim JH. Sterile pyometra in two dogs. Immune Netw. 2017;17(2):128-31. https://doi.org/10.4110/in.2017.17.2.128. PMid:28458625.

Zango UU, Ibrahim M, Shawai SAA, Shamsuddin IM. A review on β-lactam antibiotic drug resistance. MOJ Drug Develop Ther. 2019;3(2):52-8. https://doi.org/10.15406/mojddt.2019.03.00080.

Downloads

Published

2021-03-23

How to Cite

Rocha, R. A., Ribeiro, W. M., Almeida, J. A. de, Santos, A. L., Fernandes, M. R., Barbosa, M. S., Moraes Filho, A. V. de, Carneiro, L. C., & Silva, C. A. da. (2021). Detection of resistance genes in pyometra isolated bacteria in bitches. Brazilian Journal of Veterinary Research and Animal Science, 58, e173908. https://doi.org/10.11606/issn.1678-4456.bjvras.2021.173908

Issue

Section

FULL ARTICLE